Exploring Automatic Recognition of Labanotation Dance Scores

[This post describes the research of Michelle de Böck and is based on her MSc Information Sciences thesis.]

Digitization of cultural heritage content allows for the digital archiving, analysis and other processing of that content. The practice of scanning and transcribing books, newspapers and images, 3d-scanning artworks or digitizing music has opened up this heritage for example for digital humanities research or even for creative computing. However, with respect to the performing arts, including theater and more specifically dance, digitization is a serious research challenge. Several dance notation schemes exist, with the most established one being Labanotation, developed in 1920 by Rudolf von Laban. Labanotation uses a vertical staff notation to record human movement in time with various symbols for limbs, head movement, types and directions of movements.

Generated variations of movements used for training the recognizers

Where for musical scores, good translations to digital formats exist (e.g. MIDI), for Lanabotation, these are lacking. While there are structured formats (LabanXML, MovementXML), the majority of content still only exists either in non-digitized form (on paper) or in scanned images. The research challenge of Michelle de Böck’s thesis therefore was to identify design features for a system capable of recognizing Labanotation from scanned images.

Examples of Labanotation files used in the evaluation of the system.

Michelle designed such a system and implemented this in MATLAB, focusing on a few movement symbols. Several approaches were developed and compared, including approaches using pre-trained neural networks for image recognition (AlexNet). This approach outperformed others, resulting in a classification accuracy of 78.4%. While we are still far from developing a full-fledged OCR system for Labanotation, this exploration has provided valuable insights into the feasibility and requirements of such a tool.

Share This:

The ESWC2019 PhD Symposium

As part of the ESWC 2019 conference program, the ESWC PhD Symposium was held in wonderful Portoroz, Slovenia. The aim of the symposium, this year organized by Maria-Esther Vidal and myself, is to provide a forum for PhD students in the area of Semantic Web to present their work and discuss their projects with peers and mentors.

Even though this year, we received 5 submissions, all of the submissions were of high quality, so the full day symposium featured five talks by both early and middle/late stage PhD students. The draft papers can be found on the symposium web page and our opening slides can be found here. Students were mentored by amazing mentors to improve their papers and presentation slides. A big thank you to those mentors: Paul Groth, Rudi Studer, Maria Maleshkova, Philippe Cudre-Mauroux,  and Andrea Giovanni Nuzzolese.

The program also featured a keynote by Stefan Schlobach, who talked about the road to a PhD “and back again”. He discussed a) setting realistic goals, b) finding your path towards those goals and c) being a responsible scientist and person after the goal is reached.

Students also presented their work through a poster session and the posters will also be found at the main conference poster session on tuesday 4 June.

Share This: