
Helping subsistence
farmers in West Africa

Tom Jansen

Vrije Universiteit Amsterdam, 2015

Abstract. Subsistence farming or agriculture is a form of farming where farmers mainly

focus on growing enough food to be self-sufficient. Especially in African countries, where

people are very dependent of own-grown food, this type of farming is very common.

Subsistence farming, however, in these countries has so much to gain and has so much

potential. Improving the farming skills of the farmers could make significant

contributions to the reduction of hunger. Unfortunately, farmers often haven’t had

enough agricultural education to optimally grow their own food. In this paper, an

application is presented that will help subsistence farmers to improve their farming and

thus their quality and quantity of food. The application helps the farmers to identify

diseases of their crops and animals and will present them ways to manage the diseases

and prevent them in the future. Furthermore, an attempt is made to provide some ways

on how to continue from this point on.

Introduction
According to the Africa Human Development Report 2012 more than 75% of cereals and

almost all crops in Africa come from domestic agriculture. In rural areas, 70% of the

extremely poor population rely on agriculture as their crucial source of income [1]. These are

only a couple of numbers that represent the importance of agriculture in Africa, let alone the

importance of agriculture in the rural areas in Africa. The numbers above particularly focus

on agriculture as a source of income. In this paper, however, we focus on agriculture as a

means to grow food for own consumption: subsistence farming. Subsistence farming is a

form of farming where farmers grow their crops and livestock to be self-sufficient. In this

paper, emphasis will be placed upon the farmers in rural areas in West Africa. Subsistence

farming, for most farmers, is their way to stay alive. They grow their own food because they

are too poor to purchase it. In many rural areas in Africa, furthermore, there is a lack of good

education. This means that lots of farmers never actually learned certain farming skills. Most

skills are taught by parents, relatives or people from the same village or area. Many

subsistence farmers, therefore, have a lot to gain when they are enabled to improve their

farming skills.

In this paper, an application is presented that will help to solve the problem presented above.

The application will help the farmers to identify, manage and prevent problems and diseases

that commonly occur. The application revolves around a database that contains helpful

information about several diseases. Identification possibilities are shown to the farmers,

helping them to define the disease their crops or animal have, and when the farmers have

clicked on the identification a new window pops up providing them with some information on

how to manage and prevent the disease. The idea alone sounds very simple, but that leaves

us with another issue: how to make this accessible for farmers in rural areas. The application

runs on Sugar, a framework that runs on the so called XO Laptop. This laptop is commonly

used in Africa, but mostly for educational purposes. Providing not merely children, however,

with this laptop but for example also farmers in rural areas could make a big difference for

them. The application (or activity as called for Sugar) works very simple and gives concrete

information about the diseases. To properly present the activity, first we will talk about the

concept. After the concept is clear, the process of development and the evaluation of the

activity are handed out. Finally, there is some room for a discussion and the conclusion of the

paper.

Concept
Before really going into detail about the development process, first we elaborate on the goal

and the idea behind that goal. The desirable goal is to deliver subsistence farmers a way to

improve their farming skills and to increase their harvest. To reach this goal, an activity is

developed that will help the farmers to recognize, manage and prevent diseases of their

livestock and crops. The activity to be developed had to be simple but most of all adequate

and unambiguous. The simplicity has to do with how easy it is to use the activity. Since the

activity focusses on subsistence farmers in West-Africa, where not everybody has had proper

education and where illiteracy is a big problem [2], everything has to be simple and clear. In

order to make it accessible for as much people as possible, the activity is most of all icon and

pictures based. Because pictures sometimes can be ambiguous, every picture does have a

supporting text. Finding a disease or pest should be possible within only a couple of clicks. In

order to get a clear idea of how everything had to look like, an activity description is added:

The activity description presents a brief overview of what the activity is supposed to do. The

whole activity had to work on the XO Laptop, a laptop that is commonly used in those parts

Activity Description:
Goal of the app:

To help farmers recognize/prevent/manage diseases and pests their crops and

livestock are struggling with.

Functional requirements:

- Help farmers recognize, manage and prevent diseases and pests

Nonfunctional requirements:

- Easy to use

- Simple and clear interface

- As little text as possible (due to illiteracy)

Use case:

1) Activity starts, the start menu is shown

2) Farmer clicks at the tile that represents crops

3) Farmer picks the kind of crop he has troubles with

4) A list with all kinds of diseases pops up, from which he can pick his

5) Show the solution and give the farmer some help to prevent them in the

future

of Africa. The XO Laptop runs on the Sugar environment, so the activity obviously had to be

Sugar based. As shown in the activity use case in the activity description, the idea was to

create three interfaces or menus. First a menu with two tiles: crops and livestock. Then two

menus that contain all the crops and livestock in the database. Clicking on a particular crop or

animal then presents a list of all the known diseases of that particular crop or animal.

Development
The Sugar environment is mainly used for XO Laptops and is therefore not a programming

environment with a lot of information and tips on the internet. The Sugar activities that run

on the environment can be coded both in Python and JavaScript. Where Python is the more

recommended way to do it, JavaScript is the easier one because programming and testing can

be done on any ordinary computer. If the activity is coded in Python, one would need a Sugar

environment to actually test the environment (which is possible on Linux based computers).

For coding in JavaScript there is a nice environment that made Sugar more accessible:

Sugarizer [3]. This online Sugar platform can be downloaded on many devices and coded

activities can then be tested. The Subsistence Farming activity this paper is about, is also

created using Sugarizer and JavaScript.

Now that the concept and environment are clear, it is time to get into detail about the actual

development. As stated in the activity description, there were three interfaces or menus to

create: the main menu, a crop and livestock menu and an interface representing all the

diseases per crop or animal. The whole Sugar interface actually is a canvas where you render

all the pages into. The toolbar of the interface, however, is a part of the page that always

stays the same. That is also the reason the rest of the page is a canvas where you render

content into. Our toolbar only consists

of four buttons. The two outermost

buttons, the activity and stop button,

are standard in every Sugar activity.

The left most button is the activity

button, where one can see the activity

icon with a description when clicked.

The right most button is the stop

button and exits the activity. The other two buttons right from the activity button are a home

and forum button. The home button leads one to the main menu and the forum button is not

active yet, more on this in the discussion section. The main menu only consists of two

buttons, a crop and livestock button, as shown on the right. Many Sugar activities that are

programmed with JavaScript use the Enyo framework [4]. Enyo is a JavaScript framework for

building (mostly HTML5) apps and is often used for Sugar activities. In Enyo, every page or

part of a page is defined as a ‘kind’. Every kind contains a couple of properties that define the

page, most important are the components of the kind. In the components you specify what

you want to render into the page. For example the components that represent the main

menu are as follows:

Here, the two images are given a source, class (where you define the style) and an “ontap”

function that is defined later and where one can define what happens if the button is clicked.

There is one more thing to take into account here that has not been mentioned yet. Since the

activity is meant for subsistence farmers in West-Africa, multi-linguicity has to be supported.

In this paper, all the code and images are in English but it cannot be assumed that all the

farmers understand English. Fortunately, Sugar is able to translate activities which makes it

possible to support multi-linguicity.

The second menu or interface is

‘coded-wise’ the same as the main

menu. All the buttons are defined as a

component and have a supporting

text, that is a component on its own as

well. Clicking on the icon of an animal

will then lead to the page of the

particular animal. The icons that are

used and can be seen in the screenshot come from The Noun Project [5] and are licensed

under the Creative Commons or Open Domain license.

In the concept, it is already mentioned that the crucial part of the activity revolves around a

database containing all the information about the diseases. This comes forward in the third

and final interface where all the diseases per crop or animal are presented. The database we

are talking about is a large JSON file where every variable looks like the following line of code:

Every crop and animal have a variable in the database file, and every variable consists of a list

of diseases. Every disease is specified in a number of name/value pairs:

 Livestock (or crop): where the name of the animal or crop is given

 Disease: the name of the disease

 Identification: features of the diseases which make it recognizable

 Management: how to manage and possibly prevent the disease

 Other: possible extra information

 Src: the source of the supporting picture of the disease

The third interface renders the suitable information from the database (disease,

identification and src) into a list of text and pictures that is shown below.

To make this possible, first an empty

list is created with an undefined

number of list items. The Enyo

framework has some standard kinds

and classes that represent lists as well,

these are easy to use and save a lot of

work. The content of the list items and

the source images are defined when

an icon of a crop or animal is clicked. When this page is being loaded, the database is being

searched for diseases of the selected crop or animal. The number of list items is defined by

the number of diseases it finds. After the number of list items is defined, the content and

Figure 1: The functioning of ERS

source of the images are set. When a list item is clicked, a pop-up screen is shown with the

management (and prevention if available) of the chosen disease. The farmer now knows

what do and hopefully his crops or animals can overcome the disease.

Evaluation
Looking back at the requirements of the activity that were set in the activity description, it

can be said that both the functional and nonfunctional are fulfilled. The activity helps the

farmers to recognize, prevent and manage diseases by accessing a database with the right

information for the farmer. This information can be accessed within only a couple of clicks.

When the disease is found within the least amount of possible clicks, the right information

can be accessed by the farmer within only three clicks. The activity relies on images as much

as possible, and has a supporting text with every image to make the purpose of the image

unambiguous. All the interfaces or menus consist of clear tiles, that make them as convenient

as possible.

Discussion
Although the activity is finished and meets the criteria that were set in the activity

description, there are some points for discussion. The activity can be improved to make it

even more useful for the farmers. A functional requirement that is not in the activity

description, but a requirement that has always been kept in mind is the fact that farmers can

help each other. There is only one way to let them help each other; by making it possible for

the farmers to communicate. If the activity would contain a forum (the already existing

button in the toolbar) where farmers can reach out to each other, the activity would be even

more functional then it already is. This way, farmers can help each other with diseases or

problems that are not yet in the database. Next step would be to make it possible for the

farmers to add information to the database. This way the activity can expand without any

help from the outside. The information would become more and more adequate and the

database would expand as well. To make the database accessible for multiple users, it has be

stored and shared somehow. Internet would be the simplest solution, but internet is exactly

one of those things most subsistence farmers do not have access to. There is, however, a

solution: ERS. ERS works as shown in Figure 1

and has already been implemented in several

cases with the XO-Laptop in West Africa [6]. It

makes it possible to share data even within small

local networks. ERS works with three types of

components: the contributors, bridges and a

global server. Looking at this with respect to the

activity described in this paper, all of the

contributors (the farmers) would have a

database which can be sent to and received from

the bridges. These bridges make it possible to

connect several isolated networks to each other

and the global server. This would make it

possible for farmers to access, mutate and expand the database

Conclusion
In this paper, an activity is presented that can contribute to subsistence farming in (mostly)

rural areas in Africa. Subsistence farming is especially in rural areas in Africa very common.

Despite the fact that it is very commonly carried out, the way it is carried out can be

improved a lot. Improving subsistence farming can contribute to the living standard of the

farmers; their food stocks can grow and they might even be able to sell some of their stocks.

The subsistence farming activity runs on the Sugar environment for XO-Laptops and will help

the farmers to recognize, manage and prevent diseases. In addition to the presented activity,

some recommendations are put forward. Implementing a forum to make communication

possible and using ERS to store and share the database would improve the activity as it is.

References
[1] United Nations Development Programme, Africa Human Development Report, United

Nations Publications, 2012, 65-66

[2] UNESCO, Regional fact sheet – Sub-Saharan Africa, 2010, 1-2

[3] http://sugarizer.org/

[4] http://enyojs.com/

[5] http://thenounproject.com/

[6] M. Charlaganov, P. Cudré-mauroux, C. Guéret, M. Grund, & T. Macicas, The Entity

Registry System: Implementing 5-Star Linked Data Without the Web, 2013, 4-6

http://sugarizer.org/
http://enyojs.com/

