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Abstract—In the realm of database technologies,
the reign of SQL is slowly coming to an end with the
advent of many NoSQL (Not Only SQL) alternatives.
Linked Data in the form of RDF is one of these, and
is regarded to be highly effective when connecting
datasets. We revised a real-world system for linking
datasets based on a much more mainstream NoSQL
technology, and by altering the approach to instead
use Linked Data, we saw how we could improve on
the current solution. The result was a more modular
system living up to many of the promises of RDF. On
the other hand, we also found that there for this use
case are some obstacles in adopting Linked Data.

We saw indicators that more momentum needs
to build up in order for RDF to gradually mature
enough to be easily applied on use cases like this.
The implementation we present and demonstrates a
different flavor of Linked Data than the common
scenario of publishing data for public reuse, and by
applying the technology in business contexts we might
be able to expand the possibilities of Linked Data.

1 INTRODUCTION

As data is growing both in quantity and com-
plexity, increasingly many developers are look-
ing for alternatives to the conventional relational
database systems. The current recession of re-
lational databases like SQL is often attributed
to problems such as scalability issues [1] and
an object-relational impedance mismatch [2]. The
adoption of NoSQL (Not only SQL) techniques
is thereby getting more widespread and is heavily
accelerated thanks to high-performing services de-
veloped by business giants [3], such as Amazon’s
Dynamo [4] and Google’s Bigtable [5].

In addition, the schema-less nature of many
NoSQL databases also brings about an improved
ability to handle loosely organized data with ease
[6]. One of the most ambitious efforts in pur-
suing this is Linked Data, usually expressed by

triples or quadruples adhering to the RDF (Re-
source Description Framework) format [7]. This
semantic technology can be of great asset when
facing challenges like integrating datasets, ame-
liorating reusability, and interpreting complicated
data structures [8]. Linked Data is often well-suited
for contributing to an open web of information
in the spirit of the Linked Open Data Movement
[9]. However, not all Linked Data is open, and
the technique can also be of benefit when linking
heterogeneous datasets internally [10], which was
the incentive behind this project.

We used RDF to design a system that general-
ize and aggregate various data structures of user
information. We looked into how the choice of
database can affect the development, maintenance,
and quality of a product by revising a solution
for the social enterprise TTC Mobile. The sys-
tem we examined elicits information originating
from different sources and presents this to the
user through an interface. The tool also serves
as a central hub allowing different applications
to be able to communicate and reuse data. The
RDF-based solution was compared to the existing
implementation that is using the document-oriented
store MongoDB1, which is one of the most well
established NoSQL database as of today.

TTC Mobile2 (Text to Change Mobile, here-
after referred to as TTC) is a non-governmental
organization equipping customers in developing
countries with high-quality information and impor-
tant knowledge they could not acquire for them-
selves. TTC offers mobile-based solutions such as
SMS and call services and focuses on projects
implying a social change coherent with the values
shared by the company.

1https://www.mongodb.com/
2http://ttcmobile.com/



Fig. 1: The distribution of popularity mea-
sures for different database types as defined by
db-engines.com. The figure was retrieved in
June 2015.

1.1 Problem Summary

By using semantic technology to connect the
datasets of TTC, we obtained insights in possibili-
ties of using Linked Data as opposed to a document
store, which would be a more common solution to
this problem. We did this by revising the original
document-oriented solution already implemented
by TTC, and looked into different possibilities of
Linked Data improving on this.

2 BACKGROUND

2.1 ICT4D and Linked Data usage

The process of utilizing ICT to aid developing
countries is often referred to as ICT4D (Informa-
tion and Communication Technology for Devel-
opment), and has been practiced under different
names since the 90s [11]. The intersection be-
tween semantic technology and ICT4D has also
been touched upon. Initiatives in this direction are
mainly oriented towards Linked Open Data, and
has its roots in the fact that open ICT operations
is thought to be an important catalyst in devel-
opmental aid [12]. A recent example of this is
the initiative of converting documents from the
International Aid Transparancy Initiaitive (IATI) to
Linked Open Data [13]. In our project, the objec-
tive of publishing data was of secondary nature,
but we still allowed for this as a future possibility
when designing the system.

2.2 Linked Data popularity

Fig. 2: The popularity change for database types as
defined by db-engines.com. The y-axis depicts
the percentage of scores in relation to the start
of the time line in January 2013. The figure was
retrieved in June 2015.

Although the prevalence of Linked Data is
relatively big within ICT4D, the overall inter-
est in RDF technology is not very pronounced
outside academic contexts. Figure 1 shows the
current proportional popularity3 among different
database types, as defined by the ranking site
db-engines.com. Relational databases appear
to be the most popular method by far, followed
by document stores. According to the measure,
RDF stores constitute 0.3% of the total, giving it
the impression of being one of the more obscure
entries in this chart.

These statistics can partly be explained by a
gap of maturity between SQL technologies that
have been developed since the 70s, and the RDF
standard which was published in 2004 [7]. But
when looking at Figure 2, we see a hint that the
tide could be turning. The popularity of relational
databases is declining, while RDF stores are get-
ting more attention. Given these figures, semantic
technology could be considered to still be in its
infancy, and we review some well-known problems
of Linked Data later in this section. We also see
that the document stores, being the second biggest
database model, grows by a slightly higher rate
than RDF, proportionally speaking. Statistics from
db-engines.com also concur with the common
view that MongoDB is the most popular document
store as well as being the biggest NoSQL player
overall.

We also note the share of graph databases
(0.6%), of which RDF stores can be considered
to be a more narrow subset. In this work we

3For information about calculation of this measure, please
refer to http://db-engines.com/en/ranking definition



choose to focus on RDF over other graph databases
because of the standardized, lightweight, and non-
proprietary format given by the Web Consortium
(W3C) [7]. The effectiveness of this format is
demonstrated in the evolution of the community-
based collaboration cloud DBPedia [14], which
successfully is being able to interlink a vast number
of data sources.

2.3 Data representation on a conceptual level

Putting technical details aside, these presented
data model trends might also be seen from a
perspective of how digital representation accom-
modate to human conceptualization of knowledge.
The field of concept modeling aims to describe
information in an understandable manner. The idea
of applying this domain on computer science has
been around since the 80s [15]. There are different
approaches on this, even from the philosophical
domain [16], but a more pragmatic definition [17]
states that a proper conceptual model should strive
to:

1) Enhance an individual’s understanding of
the representative system.

2) Facilitate efficient conveyance of system
details between stakeholders.

3) Provide a point of reference for system
designers to extract system specifications.

4) Document the system for future reference
and provide a means for collaboration.

If the gap between the conceptual model and
the internal representation is bridged, the system
will likely be more easy to develop and main-
tain, especially with regards to item 3. Moreover,
it will enable personnel with a non-engineering
background to gain a deeper understanding of the
system. From this viewpoint a database represen-
tation that is easier to understand is preferred over
one that is more cryptic.

Understandability is often thought of as a prob-
lem when using relational databases, where data
has to be structured in predefined tables, apply
cross referencing using foreign keys, and they usu-
ally have to be mapped from an intermediate stage
of Entity Relationship Modeling (ERM). Thinking
in tables might by a spontaneous choice when
recording simple measurements (e.g. temperature
over time), but when portraying more complex
entities, the model often gets relatively compli-
cated. An object-oriented view is often practical
for programmers to embody concepts, but can not
easily be transformed to a relational database. This

discrepancy is usually referred to as the Object-
Relational Impedance Mismatch [2].

NoSQL databases often mitigate these prob-
lems by allowing less fixed structures. In docu-
ment stores, information is structured hierarchi-
cally through keys and values, allowing for more
convenient storage representations. One implied
restriction in this is that a data item cannot easily
be referenced in a way that breaks the hierarchy.
By instead using graph databases, data can be rep-
resented in an even more natural way, as claimed
by proponents of this view such as Webber et. al in
the textbook Graph Databases [18]. For example,
consider a social network where users are friends
with other users. Using documents, the friends of
a given user are usually listed as references to
identifier values, which then have to be looked up
in the collection in order to retrieve the names
of these friends. This look-up typically also has
negative performance impact, in addition for being
a bit bulky.

The renowned data analysist Manuel Lima de-
scribes what he considers an ongoing paradigm
shift: “Tree structures are no longer capable to
accommodate the inherent complexities of the mod-
ern world”4. He states that as Information Systems
are getting more intelligent and need to process
more intricate data, network structures are the most
effective way conceive information.

On the other hand, there are many contexts
where tree structures fit the problem quite well.
Consider as an example a system storing cookbook
information. A probable situation is that the data
then consists of three hierarchical levels: The cook-
books, their recipes, and their ingredients. Neo4J,
the most popular graph database today5, points out
in an instructional document6 that any common
data model can be represented as a type of graph.
While this is true, there is naturally no prerequisite
enforcement of preserving the characteristics of
those structures, e.g. preventing cycles, neither con-
venient manners of storage and retrieval. The need
for accommodating different data abstractions has
spawned the incentive of hybrid representations,
such as OrientDB7. We also saw the need for such
an approach in this project, which we elaborate on
in later sections.

4This talk can be watched at http://www.wearecognitive.
com/videos/rsa-animate-the-power-of-networks (retreived July,
2015)

5As stated by db-engines.com
6This document was retreived in July 2015 from http://

neo4j.com/docs/stable/tutorial-comparing-models.html
7http://orientdb.com/



2.4 Issues with Semantic Technology

There has been a fair amount of criticism
directed towards Linked Data, which is mainly
concerning the way it is being applied in the wild,
rather than problems inherent to the technology
itself [19]. The main points center around poor
data integrity and weak reliability of information.
This is often caused by insufficiently documented
provenance information and an inability to resolve
conflicts between statements due to a limited use of
powerful reasoning languages such as OWL. Even
when using these expressive languages, problems
can arise due to incorrect interpretations of these
statements and misconceptions of official docu-
mentation [20]. Furthermore, most datasets pub-
lished today use different methods of structuring
their schemata, which complicates the process of
linking different datasets, where ideally the linking
of Linked Data should be easy to perform.

It is important to be aware of these concerns,
although the circumstances here were different
than the typical use case of publishing data for
public reuse. The data models developed in this
project are primarily intended for internal use
within the organization, where company require-
ments are paramount. There is also a remote pos-
sibility of publishing data, but was regarded only
as a secondary objective. This means we valued
pragmatic use case driven solutions higher than
rigorous usage of strict vocabulary. We therefore
payed close attention to the intentions and desires
behind the functionality of the system.

2.5 Business context

Being a Dutch company, TTC have their head-
quarters in The Netherlands. Their operations typ-
ically reach out for people in Africa or South
America. Projects can roughly be divided into these
three categories:

• Data collecting. Services carried out in
order to investigate public knowledge on
certain topics. An example of this is a
collaboration on a research project with
the World Bank, where surveys were car-
ried out in order to obtain information on
the downstream outcomes of intra-regional
trade commitments in Africa8.

• Providing of information or educa-
tion. Campaigns oriented towards equip-
ping participants with knowledge. Here we
consider projects such as when citizens of

8http://ttcmobile.com/portfolio/worldbank/

Peru receive messages about their personal
credit status of their savings9. The infor-
mation can also be of a more educative
nature, like a project in Bolivia where
farmers get advice on how to improve their
crops10.

• A combination of the two. In many
cases, participants can get feedback from
their answers in surveys, thereby educating
themselves on important subjects in an
interactive way. The HIV/AIDS prevention
campaign in Congo is a good example of
this11.

TTC have a variety of tools at their disposal
for different purposes. The software they use to
realize a campaign depends on the medium used to
transmit information. These are the communication
channels used today:

• SMS (Short Message Service).

• USSD (Unstructured Supplementary Ser-
vice Data). A protocol for communicating
through interactive menus or pop-ups. It is
supported by most GSM cellular phones.
In comparison to SMS, USSD has the
advantage of being free of charge and a
bit more flexible. The drawback is that the
participant only see the current message
and is unable to view any previous infor-
mation exchange.

• IVR (Interactive Voice Response). Pre-
recorded voice-based systems controlled
with the number pad of the participant. In
other contexts, the IVR input can also be
done by voice, but this is not supported by
TTC due to the variety of languages used
across different projects.

• Call centers. Outbound or inbound calls
conducted by live personnel.

In the future TTC also expects possibilities of
doing web based services to come about. With
responsive web design these could be accessible
by clients with smartphones, laptops, or desktop
computers, as well as traditional feature phones.

The emphasis within this research was oriented
around two tools used by TTC:

• Vusion. Creating SMS and USSD services
with conditional logic in order to achieve

9http://ttcmobile.com/portfolio/financial-awareness-peru/
10https://vimeo.com/104697345
11http://ttcmobile.com/ttc-launches-large-scale-hivaids-

prevention-campaign-in-congo-with-cordaid-vodacom/



Fig. 3: Airwolf, an application for logging call center surveys.

Fig. 4: Vusion, an application for creating SMS and USSD services

various goals. This is the most frequently
used application within the company.

• Airwolf. This application acts as a logger
for call center agents carrying out surveys.
The surveys are defined by authorized
moderators, where the agents then conduct
these surveys by reading the questions
to the participants. The answers of the
participants are stored in the system.

The user interfaces of Airwolf and Vusion can
be seen in Figure 3 and 4, respectively.

Aggregating information from internal tools
like the ones presented serves two purposes. Firstly,
applications can reuse data by performing look-ups
against a central unit. Secondly, statistics can be
extracted by humans through a user interface.

2.6 Case overview

Without an internal data broker, TTC are posed
with the issue of maintaining multiple projects
within different systems, not being able to connect
any data from one context to the other. Different
campaigns are ran on different platforms, causing



interoperability problems which has lead to the
implementation of the tool solving these issues.
The transition from traditional phones (also known
as feature phones) towards smart phones is slowly
coming about among the target market, calling
for even more additional services, which would
likely be more intricate than the existing ones. In
order to centralize all of this, the company made
an internal API acting as a middle man between
various applications; a portal being able to track
diverse types of information and mediate between
different sources. The system can be utilized by
visualization techniques depicting comprehensible
summaries of the immense quantity of information
possessed by the company as a whole. The system
supports a temporal dimension in the data, where
modified fields are not overwritten but logged and
preserved by the central system. In this way, the
historical trends of user information are available.
The system is called Mash.

The original version of Mash uses the
document-oriented database MongoDB and was
written in Node.js. Node.js is a run time envi-
ronment for server-side applications in Javascript.
Although Node.js is not widely used on an overall
scale, it is more common among high-traffic web
sites, and server-side Javascript usage is doubling
every year [21]. The starting point for our project
was from this version, and from there we explored
what benefits RDF could bring to the table by
modifying existing code.

MongoDB, the database used by Mash, stores
documents in the BSON format [22], closely re-
lated to JSON. As long as a data entry conforms
to this format and certain length restrictions, there
are no taxonomic constraints on a given document.
However, this flexibility comes with trade-offs in
rigidity, and enforcing constraints can be tedious
when done manually in application logic. Most
applications will always handle entities containing
the same fields on storage and retrieval, which
often elevates an explicit schema definition to be
a feature rather than a burden. This is why Mash,
among many other applications, uses the schema-
enforcing library Mongoose. Mongoose is very
popular and download statistics suggests that about
half of the developers using MongoDB also use
Mongoose on top of it. These numbers come from
the Node.js package manager npm, broadcasting
current download counts [23][24].

Mash allows data exchange in the following
manners:

• By using the graphical interface,
◦ to make a CSV import or export,

◦ or manually inputting/viewing par-
ticipant information.

• Through GET requests (for applications
communicating with the API).

3 RESEARCH QUESTION

What are the implications of using an
RDF database when designing a hub
for internally aggregating heterogeneous
information?

We conducted a case-study by developing a
proof of concept for TTC Mobile. This means
creating an alternative branch in the development
of the system Mash. We demonstrated the func-
tionality of Linked Data by preserving the key
requirements of the product as well as providing
new features. In the process of executing this
project we could investigate the following items:

– Appropriate data representations when ag-
gregating datasets originating different ap-
plications.

– The technical and organizational obstacles
explaining the limited popularity of RDF
techniques.

– The tradeoffs in using an RDF database as
opposed to a document store.

– Methods of versioning data allowing for
viewing the history of previous states us-
ing RDF.

4 SYSTEM DESIGN

We saw a risk that handling triples through
a SPARQL interface would result in a similar
awkwardness other applications have when using
plain MongoDB, with regards to consistency as
discussed in Section 2.6. The network-based rep-
resentation provides even more arbitrary structures
than that of a document store, and while being
of great benefit when linking heterogeneous data,
it also poses challenges on maintaining internal
consistency and ease of use. There was a need to be
able to express schema definitions that could han-
dle insertion, validation, and retrieval in a modular
way similar to Mongoose.

We approached this problem by using the RDF
store Cliopatria, to build up a higher level of
abstraction than just triples. Cliopatria is based
on SWI-Prolog [25], which allows for exchange
of RDF data to be executed in a more powerful



manner. The main incentive here is to be able
to push data boilerplate transaction logic into the
querying language. When doing this we can avoid
an extensive mix of verbose queries and client code
that often renders the software hard to maintain.
This very reason was one of the main drivers
behind Cliopatria as explicitly stated by the au-
thors [26]. Cliopatria is also still compliant to the
standards by providing a SPARQL interface, which
could be used by any authorized application to
query specific data.

4.1 Modeling

The model as stated in Mongoose compensates
a need of storing information that can be useful for
later compatibility with a specification of relevant
elements. To this end, the Mongoose model utilizes
a certain degree of non-schematic flexibility while
still having a fixed characteristic. For the sake
of completeness, the entire schema declaration is
included in Figure 5. However, it is not necessary
to go into details of the exact use of every field. In-
stead we focus on the flexibility aspect that comes
into play with the very last attribute, profile.
Within profile one can invent keys representing
various aspects of the participant. Among these,
three keys are already hard-coded to be handled
by the user interface:

• profile.dob. The date of birth.

• profile.location. The current place
of residence.

• profile.gender. The gender of the
participant.

The values of profile are in turn objects by
themselves containing two keys:

• profile.<key>.value. The value of
the field.

• profile.<key>.history. An array
of history entries, where each item is an
object with the following attributes:

◦ value. The value that was as-
signed.

◦ timestamp. A specification of
when this assignment took place.

With this solution, temporal provenance can be
stored for every modification of a value in
profile. However, a limitation of this method
is the lacking possibility of expressing deeper
hierarchies within a profile item. For example, it
would not be easily achieved having a composite
location attribute consisting of house number, city,

and postal code. These fields would either have
to be represented in a flat way, with entries like
location_postal_code, location_city
and location_house_no, or the data model
has to be revised, and will likely get even more
complicated. In the current implementation, every
data input needs a restructuring to fit this for-
mat when communicating with Mash. Furthermore,
there is no way of validating data types within
profile, e.g. that profile.dob has to be a
date.

We resolved this by being able to first store
the data, and then define its model, rather than the
other way around. By defining simple conversion
procedures from various formats to RDF, we could
preserve as much information as possible, and
from there on decide what to make out of it.
We thereby took advantage of the fact that every
other data structure can be expressed as a graph.
Drawing inspiration from the nomenclature used in
the Linked Open Data Laundromat project [27], we
made a distinction between clean and dirty data.
Here, dirty data denote any piece of information
converted to RDF using a simple set of rules
(conversion strategies are elaborated on in Section
4.4). Still adopting the same terminology, we wash
the dirty data into structures with fixed fields
mimicking a document-like data format. By storing
dirty data once, we can create custom washing
heuristics in a versatile manner when making sense
of the data. A bird’s-eye view of the architecture
illustrating this idea can be found in Figure 7.

This means that applications do not necessarily
have to provide input using a preset data model.
Rather, data can be transmitted in a native format,
which is then handled by Mash accordingly. Data
can thus be imported with raw database dumps
directly from the application. This could be done
either through API communication or through the
user interface. As a proof of concept within this
project, we only implemented the latter.

We present a Prolog way of modeling docu-
ments internally represented in RDF. Using this
method clean data is expressed in fixed structures.
The model definition can then be rewritten like in
Figure 6.

These are key differences that distinguishes the
new schema in Figure 6 from the previous schema
in Figure 5:

• By means of the versioning solution later
explained in Section 4.3, we can remove
many fields indicating dates of creation
and update. The created attribute of
participantOrigin is kept, because



var participantEventsSchema = Schema({
application: Schema.Types.ObjectId,
created: Date,
pid: Schema.Types.Mixed,
pname: String,
event: String

}, {_id: false});

var participantOriginSchema = Schema({
application: Schema.Types.ObjectId,
created: Date,
provider : {

/** Field name "type" means that the
type has to be set explicitly **/

type: {type: String},
name: String,
comment: String,

},
});

var participantSchema = Schema({
__schema_version: {type: Number,

default: currentSchemaVersion},
created: Date,
updated: Date,
status: String,
author_app: Schema.Types.ObjectId,
phone_number: {type: String, index: true,

unique: true},
country: String,
origin : [participantOriginSchema],
events: [participantEventsSchema],
profile: {}

});

Fig. 5: The schema definition as stated in Node.js
using Mongoose.

it represents the creation of the origin of
the participant, rather than a creation of
the data entry itself.

• We require every schema to define
a version as a last argument of the
use_model/3 predicate, which later
can be requested with the predicate
instance_version/2. The version
number ensures that a different declaration
of the same model needs to increase this
value, or else the database will throw an
exception.

• The profile field is removed, since the
additional data already is stored on before-
hand. Instead, we place the fields dob,
location, and gender in the root of
the participant.

To illustrate one of the added values in sim-
ulating document storage in RDF, consider the
query for fetching the full participant information
in Mongoose for a certain phone number:

Participant.find({
phone_number: "233242023017"

})

use_model(_{
application: resource("app"),
pid: string,
pname: string,
event: string

}, "participantEvents",1.0).

use_model(_{
application: resource("app"),
created: date,
provider:_{

type: string,
name: string,
comment: string

}
}, "participantOrigin",1.0).

use_model(_{
status: string,
author_app: resource("app"),
phone_number: string|unique,
country: string,
origin: ["participantOrigin"],
events: ["participantEvents"],
dob: date,
gender: string,
location: string,

}, "participant",1.0).

Fig. 6: The new schema definition as stated in
Prolog using Cliopatria.

Now, imagine a SPARQL query of retrieving an
entire participant structure, given the same original
data model. Such a query would be quite verbose,
since we explicitly have to mention every field
and get into more complicated nesting when re-
trieving the arrays of participantOrigin and
participantEvents with several OPTIONAL
parameters, since there could be missing fields.
This query would also return all permutations of
array values, and in practice such a query would
likely be split up into several smaller queries. A
glimpse of how the SPARQL query would look like
if put into one request can be found in Appendix
A.

With the our Prolog library we can instead in-
quire for the specified participant using this syntax:
search_data_model(_{

phone_number:"233242023017"
},Data,"participant").

The participant information is then bound as a
Prolog dict in Data. The underlying information
is still stored as RDF, but the extra layer of
abstraction helps a lot. Insertion of data is also done
through a Prolog dict whose format is validated
upon insertion. Schematic information compliant
to the RDF schema vocabulary [28] is also stored,
which is valueable if the data needs to be reused in
another context. The generated schema definition
for the participant has been attached in Appendix
B.



Fig. 7: An overview of our implementation of Mash and its interactions.



4.2 Washing

The triple-based representation is still highly
useful when dealing with incoming dirty data. We
demonstrate a simple example of washing data in
Figure 9. Several washing goals like this can be
added in a central file, which are then carried out
upon execution of the predicate wash_data/0,
which generates clean information. In the presented
example, data is processed from a CSV file with
columns in the order of phone number, gender and
date of birth. We describe the few simple steps that
are done in the provided code snippet:

1) Ask for the identifier of the application
Vusion.

2) Get the graph belonging to a CSV import
from this application.

3) Specify triple patterns to query the raw
data using the predicate rdf/3.

4) Save the participant specifying extracted
data accompanied by the origin(s) and a
string naming the washing heuristic (in
this case “Version 1.0”).

Participants will then appear in the user inter-
face and can be retreived by the outside world.
With these 12 lines of code, Mash is compatible
with a new type of data structure. This is a mod-
ular approach that allows any data import to be
accounted for, as long as a conversion to RDF is
possible in the first place.

Of course, more complicated data structures
will require more elaborate code. When importing
data from the survey tool Airwolf, the record of
one participant has to be extracted out of 5 different
records. Ariwolf stores the survey definition as well
as the result as XML files, which are pointed at
through respective MongoDB collections. These 2
collections plus 2 XML files makes 4. Finally, there
is another collection where call tasks are stored,
containing the phone number. The washing of this
data took about 100 lines of code. The look of
a user resulting from this process can be seen in
Figure 8. The user in the picture answered “male”
on a question on his gender, which is recognized
by the washing procedure.

4.3 Versioning

An important requirement stated that the
change of an attribute should still preserve a record
of the old value accompanied by an indication of
a time span indicating validity of that value. The
newest value is in most cases the only relevant item
to the user, but sometimes there is also a need for
going back in history to view changes. In RDF

washing_goal((
forall((

properties_id_model(_{name:"Vusion"},
App_id,"app"),

graph_from_origin(Origin, _{
application: App_id,
provider:_{ type:"csv-import" }

}),
rdf(Line,rdf:type,raw:line,Origin),
rdf(Line,raw:’Col0’,

literal(Phone_number),Origin),
rdf(Line,raw:’Col1’,

literal(Gender),Origin),
rdf(Line,raw:’Col2’,

literal(Dob),Origin)
),

save_clean_participant(_{
phone_number:Phone_number,
gender:Gender,
dob:Dob,
country:Country},
[Origin],"Version 1.0")

)
)).

Fig. 9: An example of washing dirty data.

terms, we wanted every object to be unique for
every subject-predicate pair. A new object for such
a pair would be equivalent to an “overwrite” of an
attribute of a given subject. The database needed to
be optimized for retrieval of information that holds
in the present. We could therefore afford making
history retrieval more expensive since it is a less
common operation.

With the advent of named graphs introduced in
the RDF 1.1 standard [7], triples can be grouped
together with a graph identifier of which statements
then could be made about temporal validity. There
is not a formal consensus nor official recommen-
dation on exactly how to use a named graph [29],
and the solution will be different depending on use
cases and requirements. There has been different
approaches in achieving versioning in RDF, espe-
cially from the domain of artificial intelligence. For
example, a summary and performance comparison
of 7 different methods are presented in [30], albeit
none of them utilizing named graphs.

We made the assumption that named graphs
should provide the effect of improved flexibility
and performance that was the intention and ratio-
nale of including them in the standard. A straight-
forward example in doing this is to include every
triple in a named graph with specified validity time
stamps, such in an example on named graphs pro-
vided by the JSON-LD standard [31]. The problem
with this approach is that retrieval of a given triple
yielding multiple results needs to be resolved by
comparing the time stamp of every resulting graph.
Doing this for every triple inquiry can be a costly
procedure. Instead, the solution of by Cassidy



Fig. 8: The user interface of Mash when viewing a participant imported from different data sources.

and Ballantine [32] was preferred, where events
of insertions or removals of triples are logged
in named graphs with temporal properties. This
solution was appealing since it does not degrade
retrieval performance.

Cliopatria enabled us to superimpose Pro-
log predicates to operate on a higher level
of abstraction. By starting from the predicate
rdf_assert/3, we defined rdf_assertv/3
to denote a versioned assert storing both the
assertion and an assertion event. In the same
way we defined rdf_retractallv/3 on top
of rdf_retractall/3 to do a retraction and
record this event. As part of the requirements,
we let rdf_assertv/3 replace the old object
for a new object belonging to an already existing
subject-predicate pair. To go back in history, the
predicate rdf_history/5 is used. A demon-
stration of this implementation is shown in Figure
10.

4.4 Conversion

Three conversion features were realized, in
accordance to what was needed for the applications
at hand. The encountered formats were XML,

?- rdf_assertv(mash:bob,mash:plays,
| mash:soccer).
true.

?- rdf_assertv(mash:bob,mash:plays,
| mash:tennis).
true.

?- rdf(mash:bob,mash:plays,What).
What = mash:tennis.

?- rdf_history(mash:bob,mash:plays,
| What,Start_stamp,End_stamp).
What = mash:soccer,
Start_stamp = 1435655448.993872,
End_stamp = 1435655461.178657;
What = mash:tennis,
Start_stamp = 1435655461.178657.

Fig. 10: A demonstration of versioning imple-
mented using the solution by Cassidy and Ballan-
tine [32] .

MongoDB, and CSV. All converters were rather
general in their realizations, which means that they
operate on data of which we do not know the
structure of at conversion time. This differs from
other situations where data is expected to contain
certain fields, and the conversion process can be



tailored to the context. Some useful insights were
handy in the different conversion processes:

• XML to RDF. Drawing inspiration from
the IATI project [13], we assigned an
underlying element only consisting of text
or one attribute to be reduced to that value
rather than being a separate entity by itself.

• CSV to RDF. We used concepts such
as row and column naming, casting data
types, and resource promotion, developed
in previous research [33].

• MongoDB to RDF. We utilized the fact
that RDF has several serialization formats.
This made the conversion simple, thanks
to similarities between the format used by
MongoDB documents called BSON (Bi-
nary JSON [22]) and the RDF compatible
JSON-LD (JSON for Linked Data [31]).

For future compatibility, new conversion pro-
cedures may have to be added to the system. We
do not consider this to be difficult tasks per se,
as long as the converted structure is accounted
for in the subsequent inference (washing) of new
participants. A likely extension is to be able to
convert data coming from relational databases.
Such conversions has been investigated on behalf
of W3C, and are described in [34].

5 EVALUATION

5.1 Time measurements

Performance of storage and retrieval was mea-
sured comparatively between the two versions of
Mash. Our implementation consistently performed
worse than MongoDB, although there were not
really any noticeable waiting times when using the
graphical interface, except when uploading files.
Looking at the numbers of the clock, MongoDB
clearly outperforms Cliopatria, but when retrieving
20 participants as in one page of the user inter-
face, retrieval times still averaged around “instant”
speeds of 30 ms using RDF. This was observed
consistently when the total number of participants
were of different orders of magnitude. MongoDB
was similar in this sense; read times tended to be
dependent on the number of extracted entries rather
than on the collection size.

We measured loading times of a single page,
filtering patricipants to be male, born in the 80s,
and have a phone number that contained the digit
8. These settings are equivalent to the filter speci-
fications in the user interface shown in Figure 11.
In this test there was a total of 1.052 participants.

Fig. 11: The filtering options used for time evalu-
ation for “Detailed filter retrieve single page”.

The waiting times were here quite short in both
databases. In the second experiment we conducted
a retrieval of all participants with a phone number
containing an 8 followed by a 0 (hence searching
for substring ”80”). In this trial the database con-
tained 10.633 participants. The loading times now
started to be noticeable in Cliopatria. Loading that
all information from that many participants at the
same time, however, is not really thought to be
necessary.

The biggest difference was in writing data. One
participant insertion costed on average 32.1 mil-
liseconds in Cliopatria, while this took less than 1
millisecond in MongoDB. As described in Section
4.3, write operation speed was not prioritized since
reads are anticipated to be more frequent than
writes. Therefore the adopted versioning solution
degrades write performance, while keeping the
execution of reading at the same pace. Because of
this we observed uploads of big files and producing
clean data to be time extensive operations, and
inferring 10.000 participants took about 10 minutes
to complete. A summary of performance measures
is to be found in Table 1.

Most likely, a triple-based storage of a docu-
ments is not the most ideal back-end representa-
tion, from a performance perspective. However, the
authors believe that these speeds have a potential
to be faster than current levels. Exploration of
performance improvement was outside of the scope
of this project, but a future extension would be to
adopt results of previous work in optimizing Prolog
queries [35].



Table 1: Measured times in milliseconds for two different technologies used in Mash. All times are
averaged over 10 sequential runs. The exact commands used to test these tasks can be found in Appendix
C

Database Insert one participant item Detailed filter retrieve single page Basic filter retrieve all
MongoDB <1 8.2 45.8
Cliopatria 32.1 29.8 427.7

Fig. 12: The commit frequencies for MongoDB (above) and SWI-Prolog (below) between July 2013 and
July 2015 (taken from github.com).

Database # of contributors
MongoDB12 216

Sesame13 29
Blazegraph14 28

4Store15 20
Jena16 11

Cliopatria17 8
OpenLink Virtouso18 7

Mulgara19 3

Table 3: The number of registered contributors to
the repository of MongoDB compared to other
known open source triple stores as of June 2015.

5.2 Scalability in practice

Just like other triple stores such as Jena [36],
Hexastore [37], RDFox [38], and Bitmat [39],
Cliopatria operates in main memory. This is a
serious obstruction for a company like TTC hosting
about 100 Gb of participant information. Such
quantities would unlikely be able to fit into the
RAM of any server. This means that the presented
solutions would have to incorporate an element of
cold storage, in order not to fill up memory. Such
a feature is currently unavailable in Cliopatria.
This would have to be solved either by extending
Cliopatria or using another triple store.

12https://github.com/mongodb/mongo/tree/
240596e01525374c6d6c0dabc44c107e2c0b900d

5.3 Stability

TTC prefers to work with non-proprietary open
source projects, which applies both to Cliopatria,
whose functionality heavily rests upon the open
source project SWI-Prolog, as well as MongoDB.
Quantifiable indicators of stability of different tools
can be found by looking into statistics of reposi-
tories. The codebase of MongoDB has 216 listed
contributors12, whereas the repositories of SWI-
Prolog20 and Cliopatria17 has 25 and 8 contributors,
respectively. Although the number of contributors
does not tell the whole story as to how stable a
software is, the measure is relevant as to whether
TTC can feel confident that they are using a well
maintained technology stack. In terms of commit
frequencies, MongoDB activity is about double
than that of SWI-Prolog as can be seen in Figure
12.

13https://bitbucket.org/openrdf
14http://sourceforge.net/p/bigdata/git/ci/master/tree/

15https://github.com/garlik/4store/tree/
1b3120295f03f5e2f459091ff62546acd3b19094

16https://github.com/apache/jena/tree/
13855a6a384cda9f7b9bd2d78718a8c25cc0eb8e

17https://github.com/ClioPatria/ClioPatria/tree/
ff02edb4ce969999946aba3e2a3a234e3e5bfa5f

18https://github.com/openlink/virtuoso-opensource/tree/
5b95d916d4d6f38722f9518e1a71fdec0c384959

19https://github.com/quoll/mulgara/tree/
82f8d32658075f8121ffa3fe224301a65754021c

20https://github.com/SWI-Prolog/swipl-devel/tree/
f22780c532af35c19e05b3bdacc9781c5ba8d5ed



Table 2: Potential or existing features for different versions of Mash.

Database Import data from applications Export data for public reuse Import external datasets
Cliopatria Can be configured to handle new formats and the

semantic meanings in these can be defined flexibly.
Can be published smoothly since it
conforms to the RDF standard.

Can be implemented by using
SPARQL queries against appropri-
ate endpoint.

MongoDB Can be configured to process different formats, but the
storage model has a fixed characteristic.

Not easily achievable. Not easily achievable.

Other open-source RDF databases are also un-
able to match the same level involvement as that of
MongoDB. Table 3 shows an overview of contrib-
utor counts in various projects. All numbers were
retrieved in July 2015.

5.4 Maintainability

A concern of TTC is the need to educate
personnel in Prolog and Linked Data. Adopting
the presented system would mean to abandon a
technology that the team has years of experience
in handling and instead stepping into unknown
territory. Doing this will steepen the learning curve
of maintaining the system.

On the other hand, once developers at TTC
have these technologies under their belt, they
should in principle be able to save significant
amouts of time when connecting new applications
to Mash. In our presented solution, the connection
of a new tool would mean adding a few new
washing procedures as described in Section 4.2.
This means that Mash, the central unit, is easily
able to be adjusted to new applications, rather than
that these application would need to adapt their
data representations to fit Mash, which would be
the case in the former implementation. This is extra
relevant if TTC would acquire a new tool of which
they do not own the source code. In that case
a database dump could be translated into usable
data, which would be much harder with the current
system.

5.5 Features and extensibility

Two unimplemented but potential features for
the RDF version of Mash is to be able connect with
published Linked Data, as well as taking part in
the Linked Open Data Movement by contributing
with new data. In addition, the storage technique
explained in Section 4.1 allows us to save data
and process it in two separate steps, rather than
forcing every incoming piece of information to fit
a predefined model. These capability differences
are summarized in Table 2

6 CONCLUSION

Using semantic technology we constructed a
system that seems promising and has added value
in comparison to the document-based equivalent.
Using RDF, our system is able to import and
handle data whose characteristics are unknown
at storage time. We could here utilize the light-
weight triple format of RDF to store data in ad-
hoc structures, which then could be organized into
fixed schemata by flexibly being able to specify
the semantic meaning of imported data. On top of
this, we developed an RDF technique allowing for
applications to query data with the same compact
fluency as that of document-oriented databases.

Although our system was slower in terms
of storage and retrieval times, some optimization
work is expected to be able to lessen this perfor-
mance gap. However, we saw that this use case
poses quite substantial challenges in using Linked
Data. The team at TTC Mobile is very cautious
towards working with a representation and query-
ing language they have no previous experience
in using, and educating personnel is considered
a costly procedure. Furthermore, this wariness is
strengthened by the fact that open source triple
stores are being maintained to a lesser extent
than conventional databases, flagging for instability
issues. Lastly, Cliopatria, which we based our
solution on turned out to have limitations in terms
of data quantity, putting a cap on scalability.

A modest interest in an open-source product
generally degrades the frequency of maintenance,
whilst an unsatisfactory maintained product also
discourages practitioners from using it, creating
a vicious catch 22 effect. SWI-Prolog does un-
fortunately not seem to be an exception to this
phenomena. Due to a known bug21 of a predicate,
the search for an instance in the database took un-
necessary time where the search process essentially
needed to be done twice for every successful result.

We suspect that if RDF stores were given
more public attention, the quality and performance

21This bug is documented at https:
//github.com/lamby/pkg-swi-prolog/blob/
5d03a59447eb853e10578a1a6ccb4cd776101abe/library/
aggregate.pl#L443



of these would increase to levels closer to the
true potential of semantic technology, which by
many is enthusiastically thought of as the Web
3.0. During the development of this application,
an unknown bug in Clioaptria was discovered and
fixed, and we had to develop a Node.js module
for Prolog communication with Cliopatria. This
module is now available for public download22,
and might illustrate that new applications using
RDF could contribute in creating a snowball effect
of improved quality in RDF-powered applications
attracting even more practitioners.

22The module is available here: https://www.npmjs.com/
package/prolog-db



APPENDIX A
A SPARQL QUERY FOR RETRIEVAL OF ALL PARTICIPANT DATA

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX mash: <http://mash.texttochange.org/>
PREFIX versioning: <http://versioning.texttochange.org/>

SELECT ?participant_updated ?participant_created ?version ?status ?author_app
?country ?origin_application ?origin_created ?origin_provider_type
?origin_provider_name ?origin_provider_comment ?event_application
?event_created ?event_pid ?event_pname ?event_event ?profile_key
?profile_value ?profile_value
WHERE {
?participant rdf:type mash:participant;
mash:phone_number "233242023017".

OPTIONAL { ?participant versioning:updated ?participant_updated }
OPTIONAL { ?participant versioning:created ?participant_created }
OPTIONAL { ?participant mash:version ?version. }
OPTIONAL { ?participant mash:status ?status. }
OPTIONAL { ?participant mash:author_app ?author_app. }
OPTIONAL { ?participant mash:country ?country. }
OPTIONAL {

?participant mash:origin ?origins.
?origins rdf:rest*/rdf:first ?origin.
OPTIONAL {?origin mash:application ?origin_application.}
OPTIONAL {?origin mash:created ?origin_created.}
OPTIONAL {?origin mash:provider ?provider.

OPTIONAL {?provider mash:type ?origin_proider_type.}
OPTIONAL {?provider mash:name ?origin_provider_name.}
OPTIONAL {?provider mash:comment ?origin_provider_comment;}

}
}

OPTIONAL { ?participant mash:events ?events.
?events rdf:rest*/rdf:first ?event.

OPTIONAL {?event mash:application ?event_application.}
OPTIONAL {?event mash:created ?event_created.}
OPTIONAL {?event mash:pid ?event_pid.}
OPTIONAL {?event mash:pname ?event_pname.}
OPTIONAL {?event mash:event ?event_event.}

}
OPTIONAL {?participant mash:profile ?participant_profile.

?participant_profile ?profile_key ?profile_item.
?profile_item ?history ?profile_date_stamp;
?profile_item mash:value ?profile_value}

}

APPENDIX B
THE EXPORTED PARTICIPANT MODEL IN TURTLE

mash:application
rdfs:domain mash:participantEvents ,

mash:participantOrigin ;
rdfs:range mash:app .

mash:author_app
rdfs:domain mash:participant ;
rdfs:range mash:app .

mash:comment
rdfs:domain mash:schema_1_ ;
rdfs:range rdf:PlainLiteral .

mash:country
rdfs:domain mash:participant ;
rdfs:range rdf:PlainLiteral .

mash:created
rdfs:domain mash:participantOrigin ;
rdfs:range xsd:dateTime .

mash:dob



rdfs:domain mash:participant ;
rdfs:range xsd:dateTime .

mash:event
rdfs:domain mash:participantEvents ;
rdfs:range rdf:PlainLiteral .

mash:events
rdfs:domain mash:participant ;
rdfs:range mash:list_participantEvents .

mash:file_type
rdfs:domain mash:participantOrigin ;
rdfs:range rdf:PlainLiteral .

mash:gender
rdfs:domain mash:participant ;
rdfs:range rdf:PlainLiteral .

mash:list_participantEvents
rdfs:subClassOf rdf:List .

mash:list_participantEvents_member
rdfs:domain mash:list_participantEvents ;
rdfs:range mash:participantEvents ;
rdfs:subPropertyOf rdfs:ContainerMembershipProperty .

mash:list_participantOrigin
rdfs:subClassOf rdf:List .

mash:list_participantOrigin_member
rdfs:domain mash:list_participantOrigin ;
rdfs:range mash:participantOrigin ;
rdfs:subPropertyOf rdfs:ContainerMembershipProperty .

mash:location
rdfs:domain mash:participant ;
rdfs:range rdf:PlainLiteral .

mash:name
rdfs:domain mash:schema_1_ ;
rdfs:range rdf:PlainLiteral .

mash:origin
rdfs:domain mash:participant ;
rdfs:range mash:list_participantOrigin .

mash:participant
doap:Version 1.0 ;
rdf:type rdfs:Class.

mash:participantEvents
doap:Version 1.0 .

mash:participantOrigin
doap:Version 1.0 ;
rdf:type rdfs:Class.

mash:phone_number
rdfs:domain mash:participant ;
rdfs:range rdf:PlainLiteral .

mash:pid
rdfs:domain mash:participantEvents ;
rdfs:range rdf:PlainLiteral .

mash:pname
rdfs:domain mash:participantEvents ;
rdfs:range rdf:PlainLiteral .



mash:provider
rdfs:domain mash:participantOrigin ;
rdfs:range mash:schema_1_ .

mash:raw
rdfs:domain mash:participantOrigin ;
rdfs:range rdf:Resouce .

mash:schema_1_
doap:Version 1.0;
rdf:type rdfs:Class.

mash:status
rdfs:domain mash:participant ;
rdfs:range rdf:PlainLiteral .

mash:type
rdfs:domain mash:schema_1_ ;
rdfs:range rdf:PlainLiteral .

APPENDIX C
QUERIES USED FOR TIME MEASUREMENTS

> db.setProfilingLevel(2)
> db.participants.insert({

phone_number:"311218278123",
status:"active",
author_app:"553e407f97c8074950a3ef33",
country:"NLD",
origin: [{

application:"553e407f97c8074950a3ef33",
provider:

{type:"manual",
name:"Mash - web client"}

}],
__schema_version : 1,
__v : 0

})
> db.system.profile.find({op: "insert"})

Fig. 13: The query for “Insert one participant item” – MongoDB

> db.participants.find({
phone_number: { ’$regex’: ’.*8.*’ },
’profile.gender.value’: ’male’, ’
profile.dob.value’: {

’$gte’: ’1980-01-01’,
’$lte’: ’1990-01-01’

}
}).limit(20).explain()

Fig. 14: The query for “Detailed filter retrieve single page” – MongoDB

> db.participants.find({
phone_number: { ’$regex’: ’.*80.*’ }

}).explain()

Fig. 15: The query for “Basic filter retrieve all” – MongoDB



-? time(
assert_new_instance(New_id,_{

phone_number:"312312312132",
status:"active",
author_app:"553e407f97c8074950a3ef33",
country:"NLD",
origin:[_{

application:"553e407f97c8074950a3ef33",
provider: _{

type:"manual",
name: "Mash - web client"

}
}],
events:[],
gender:"male",
dob:"1990-07-20",
location:""

},"participant")
).

Fig. 16: The query for “Insert one participant item” – Cliopatria

-? time(
findall(

Data,
limit(20, (

Gender="male",
freeze(Dob,Dob > 315532800000),
freeze(Dob,Dob < 631152000000),
freeze(Phone_number,(

sub_string(Phone_number,_,_,_,"8"), !)),
search_id_data_model(_{

gender:Gender,
dob:Dob,
phone_number:Phone_number

},
_,Data,"participant",[offset=0])

)
),
All_data

)
).

Fig. 17: The query for “Detailed filter retreive one page of information” – Cliopatria

-? time(
findall(

Data,(
freeze(

Phone_number,(sub_string(Phone_number,_,_,_,"80"), !)
),
search_id_data_model(_{

phone_number:Phone_number
},
_,
Data,"participant",[offset=0])

),
All_data)

).

Fig. 18: The query for “Basic filter retrieve all” – Cliopatria
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