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Abstract 

This paper presents research in the domain of Information Retrieval in the case of finding 
sustainable businesses. The goal was to come up with a set of tools and methods that work 
best for retrieving relevant entries from data sets, based on automatically identified qualities 
of the data. The work consisted of studying, describing, and evaluating the literature on the 
topic to establish the state of the art in Information Retrieval, building tools for crawling the 
web and accessing databases, and coupling them with different search methods. The 
contribution is evaluating and combining the accepted best practices in the field, and 
suggesting improvements and further research. The conclusion was that crawling is not a 
desirable method for acquiring data of unknown structure, database scraping performing 
much better. Another finding was that the applied classifiers’ accuracy varies widely based on 
the characteristics of a data set, and recommendation of the classifiers to use is included, 
depending on the data set. 



1 Introduction  

1.1 Background Information 
The more informed humans are, the better decisions they can make. As the amount of 
information produced by humans and devices around them is larger than ever, big data 
projects have become the keystone of applied Computer Science in the last decade [7]. 
However, with big data come big challenges. Information retrieval is the primary one, as large 
databases are becoming exceedingly hard to search. In the context of the Worldwide Web, 
one speaks of an Indexability Wall [2], where it has become impossible to index and track 
changes in all the documents because of their sheer quantity. Because of that, automated 
retrieval is often not accurate enough, and its results are not sufficiently relevant, but 
retrieving data manually proves too slow, and projects go abandoned. A project in that 
domain was started by Enactus, a student organization at the University of Amsterdam. 
bewustindebuurt.nl is a search-and-discover engine focused on sustainable businesses in the 
user’s vicinity. However, their methodology of assembling data by hand has proven too slow, 
and the project was put on hold. It is highly probable that with an automated tool capable of 
crawling the web in search of sustainable businesses, the database could be filled much 
faster, and the project could scale up. This paper researched the possibility to come up with 
methods that enable that. The question asked is; what combination of retrieval, learning, and 
classification methods and features allows one best to automatically scrape available data for 
the purpose of identifying certain qualities in it. To answer the question, the paper evaluated 
the authors’ efforts to populate the database using the results returned by the different tools 
and methods. 

1.2 State of the Art, Related Work, and the Paper’s Contribution 
General purpose crawlers have developed substantially since the beginning of the century, 
but so has the Internet [7]. They are not able to keep up with the exponential growth of the 
volume of data, as by the time the crawler finishes indexing one part of the Web, the data it 
has collected about another faraway node has already become outdated. Even with relatively 
up to date indexing, information retrieval is hard, because what the user is searching for is 
hidden in an equivocal heap of information [1]. Furthermore, a challenge is posed by the 
vocabulary mismatch problem, meaning users often type different keywords to describe their 
search than what the authors use in the documents the user would find relevant. [4] These 
problems become amplified when expert knowledge is considered; domain-specific entries 
that are not commonly looked up. Search engines, such as Google, have learned to mitigate 



these issues, deciding to serve the majority; a keyword are usually interpreted in the way a 
layperson would mean it; e.g. a search for “how to kill a zombie” returns eight results related 
to the popular culture notion of a zombie apocalypse, but not one showing how to get rid of 
a zombie processes in a Unix operating system (google.com, query: “how to kill a zombie”, 15 
Jul 2017). 

That is why general purpose search engines cannot be successfully used to retrieve expert or 
domain specific knowledge. Several types of crawlers have been developed in response to 
this. One is focused (topic-driven) crawlers, which use a predicate of some form to limit the 
search results. Such a predicate can be the domain, a PageRank or BackLink value, such as in 
the crawler described by Almpanidis et al. [1], or an external dictionary that provides some 
information about a page before the page is visited. Focused crawlers are also known as 
vertical search engines, as their focus is on depth of the search tree, and not its breadth. The 
strategies vary by application, but a focused crawler always uses a classification algorithm to 
choose the pages to crawl. 

Chau et al. [2] proposed an alternative; a general crawler, or one with a very liberal heuristic, 
whose results are filtered using Machine Learning algorithms after they have been retrieved. 
They noticed that finding a good starting URL is enough to retrieve many relevant results, 
however, the problem that remains is removing the irrelevant search results. The methods 
they explore range from measuring the occurrences of keywords in retrieved documents, TF/
IDF matching, and binary classification using Naïve Bayes, Support Vector Machines, Neural 
Networks, and an unsupervised learning method of K-nearest neighbors for clustering. 
Interestingly, both Fabrizio [13] and Thornsten [13] praise SVMs for their universality in text-
classification tasks, while Pang et al. consider them unsuitable for binary categorization [11]. A 
more in-depth description of these methods in the context of Natural Language Processing, 
alongside a comparison with Ensemble methods, bagging, and boosting, can be found in 
Màrquez’s work in [9]. Other researchers have tried to apply the Bayesian classification 
directly as a heuristic for a focused crawler [3]. Because the inaccuracy caused by the 
classifiers can multiply the effect of an imperfect set of results, human classification is always 
needed before the results are accepted [2]. While Machine Learning is usually applied to text 
analysis in the context of sentiment analysis [2, 3, 8, 9], sentiment analysis itself can be seen as 
a special case of binary classification which can be conducted regardless of whether it is 
emotion or objective information that is being classified. 

http://google.com


Chau et al. also mention the problem of equivocal user input, such as with the word “cancer”, 
which can refer to the disease, but also the zodiac sign. That is why another big topic in 
information retrieval is intent modeling, discussed in [4]. Because the phrases used by search 
engine users and content creators vary, and sometimes are contrary to each other, such as is 
common when the author describes the problem, e.g. “air pollution”, and the user searches 
for the desired effect, e.g. “clean air”. The authors therefore suggest that by interactively 
modeling user intent, namely, suggesting phrases to users mid-search, the search 
performance can be improved by more than 100% [4]. Dividing the keywords suggested into 
“explore” and “exploit” categories lets one both accurately model the intent, and, at the same 
time, satisfy the user by returning highly relevant results [6]. Furthermore, feature selection is 
sometimes used to give more weight to certain features, which are more likely to be 
associated with relevant results [10].  

Hofmann, K. et al. recognize user input to be noisy and biased [5]. The authors say that 
context is so significant a determinant of user feedback that it is unfeasible to control all the 
variables sufficiently to produce usefully unbiased feedback. They studied how the inorganic 
factors such as placement and font choice, as well as the organic, such as personal 
preferences, make users click on different links, although semantically seen, these should not 
have had any impact. They suggested a method to minimize this bias using what they call 
probabilistic interleave [5]. If one assumes their perspective on user feedback, an attempt can 
be made to resolve the equivocal vocabulary issue on a machine level, as described in [8] by 
Petasis, who suggested Named Entity Recognition and Part of Speech Tagging as two 
methods that can be used to detect the intended meaning of the term in a document.  

Although extensive research has been done in the domain, many questions remain 
unanswered. This paper aims to find out whether applying relevance-ranking methods to the 
results retrieved by general purpose crawlers can replace focused crawling without sacrificing 
flexibility for accuracy, in places where focused crawling is not a possibility due to the 
unknown structure and extent of the domain. The work also investigates how the vocabulary 
mismatch problem and the problem of equivocal input can be mitigated by applying natural 
language processing methods such as using synonyms and hypernyms. Finally, the paper 
discusses Machine Learning methods, as reported by Chau et al. [2], for classifying results on 
relevance. 



2 Methods Employed 

2.1 Rationale and Overview 
The architecture of the toolkit is dictated by the character of problem the paper tackles The 
tool helps populate a database of sustainable businesses, and it is likely that the information 
of interest is available on different websites concerned with the topic, and in Open Data files 
that describe such places. Therefore, handling the data acquisition using a crawler, and an API 
tool is logical. 

Figure 1: Components 
Overview. 

Based on the design 
decisions described in 
Section 1, and the desire 
to evaluate and improve 
on the methods used by 
the research community, 

the authors have built a toolkit consisting of the following parts: (1) Web Crawler, (2) 
Database Scraper, (3) Machine Learning Classifier. Furthermore, they have constructed two 
helper tools that are instantiated by the main programs and facilitate their operation. These 
are (4) Keyword Matcher, and (5) Corpus Builder. The Keyword Matcher is used by (1) and (2) 
to find relevant entries. The Corpus Builder is used to build a bi-categorial collection based 
on keywords and the input from either (1) and (2) which can be divided into a training set and 
a test set for (3). (3) uses several Naïve Bayes and SVM classifiers, alongside Logistic 
Regression to classify the input. A guide for the toolkit can be found in the appendix. 

2.2 Crawler Software Choices 
Most crawlers built rely on a known website structure, and are used on a specific website 
where elements of a certain type can be retrieved using a tag that corresponds to the content 
class name, e.g. “ct” or “content”. In this case, the crawler has to scrape different websites, 
possibly with vastly varied structure and nomenclature. Unlike in the focused crawlers 
researched in [1] and [3], flexibility is a necessity here, even if it somewhat compromises 
accuracy, as it is only usable if it can be applied universally. 



The crawler was built in Python, with the help of the module Beautiful Soup 4 (BS4) . Python 1

offers flexibility and is convenient for network coding and language processing, where 
various modules can be used to automatize the interpretation and categorization of content. 
Beautiful Soup allows for HTML, XML parsing, automatically finding links and other content in 
websites, and unifying the encoding. 

2.3 Crawler Operation 
The crawler downloads the source code of one page, identifies key elements in it, such as 
href hyperlinks, or paragraphs of content, and prints them to the user console. Using 
keywords and their synonyms, URLs of the relevant documents are returned. The main 
method (get_page_data(page_url)) crawls a page, stores the found hyperlinks in a list, and 
then recursively calls on itself with the URLs as arguments. A depth argument to the main 
method call prevents crawling trees of infinite depth. When that depth is reached, 
get_page_data(page_url) still prints the content of the page that it is scraping, but it does not 
call on itself with the URLs it finds there, and the program returns. A global variable, 
urls_visited[] keeps track of the visited URLs which prevents looping back to the homepage or 
other pages referenced from within. The scraping function find_all uses argument ‘div’ which 
retrieves all content containers in the website. 
   
Custom headers are used to circumvent the reluctance to crawling that may be exhibited by 
some websites. The crawler disguises itself as a web browser; headers = {'user-agent': 
‘Mozilla/5.0’}. However, to ensure that no unauthorized crawling takes place, the program 
reads robots.txt and only crawls the parts of the website that are publicly available. 
  
The crawler features a boolean setting for filtering out all URLs that lead to websites outside 
the page’s domain. This behavior limitation may be desirable in certain situations, such as 
when scraping the content, but not in others, such as when attempting to discover new 
websites that may contain valuable content that are linked to from the current website. 
Another boolean prevents the crawler from crawling pages in its own domain in the first step 
of recursive descent. 

2.4 Keyword Scraper Operation 

 BS4 is developed by Leonard Richardson. https://www.crummy.com/software/BeautifulSoup/. Last updated and 1

accessed July 2017.

https://www.crummy.com/software/BeautifulSoup/


The keyword search functionality was implemented using additional libraries; Re  (regular 2

expressions) is used to sanitize the text from special signs, punctuation and anything that is 
not an alphabetic string of characters. Operator is used to sort the frequency table. 
Stop_words  is a very useful library that lets one remove the common “stop words” such as 3

“and”, “or”, “the”, etc. This package works in English, as well as a number of other languages, 
including Dutch. As the definite article and conjunctions are the most common words in every 
Germanic language, this lets one remove those highly prevalent yet irrelevant words from the 
results. The paragraphs are acquired using an HTTP request, and a library for turning HTML 
into plain text. However, instead of printing the text, they are sanitized and stored in a list. 
Then, a function iterates over the list and counts the occurrences of each word. The total sum 
of words is also included, so the occurrences can be expressed in terms of frequency 
distribution. The words and their frequencies are then appended to a new list of tuples which 
can then be printed or passed on for further processing. 

The crawler gets to a page, runs the scraper function to create a word-frequency table for it, 
and appends it to a dictionary, in a tuple with the page’s URL. The frequencies are analyzed 
during execution. The function takes in as an argument the series of page URLs with a list of 
word-frequency tuples for each page created by the crawler. It returns URLs whose word-
frequency lists have a high occurrence of custom specified keywords. In this way, a number of 
pages is crawled, and each page’s relevance is assessed right away. 

2.4.1 Keyword Crawler-Scraper Pseudocode 
This is the pseudocode for the crawler-scraper. For simplicity, special cases such as the 
domain restrictions are not included. 

crawled_urls [] 
search_keywords [] 
retrieved_keywords [] 
starting_url := ‘http://www.example.com' 

function crawl (url): 
 page_text = page_to_text(url) 

2,3 Re and Stop Words are part of the Python Standard Library. Python Software Foundation https://
docs.python.org/2/library/re.html

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
http://www.example.com'


 page_urls [] = page_text.find_type(‘a href’) 
 page_keywords [] = page_text.find_type(‘content’) 
 for url in page_urls do 
  crawl(url) 
 end 
 retrieved_keywords.add(scrape(page_keywords[]) 
end 
  
function scrape (keywords[]): 
 found_keywords [] 
 for keyword in keywords do 
  if keyword in search_keywords then 
   found_keywords.add(keyword) 
  end 
 end 
 return found_keywords 
end 

2.5 Parsing JSON data from Open Data sources 

2.5.1 Software Choices 
On the level of code, downloading JSON data with Python is much less complicated than 
downloading and parsing HTML content. JSON objects are easily convertible to Python 
dictionaries which, in turn, can be iterated over, browsed, and consolidated with other lists. 
The authors have used Python packages “urllib2” for getting the data from the server, and 
“json” for parsing the JSON contents. Because the nature of the data remains the same as in 
the HTML crawler, the only difference being the file format – JSON instead of HTML, JSON 
can still be searched using the keyword-based search engine. 
   
2.5.2 TF/IDF 
The hypothesis was that the accuracy can be increased by the means of feature extraction for 
Term Frequency / Inverse Document Frequency (TF/IDF) based classification, employing a 
dictionary (lexicon/thesaurus) for the keywords and the words used in the searched 
documents. This could be further augmented by machine learning methods such as Logistic 
Regression and Support Vector Machines, finding similar documents and removing less 
relevant search results from the retrieved set. The basis for this is the research done in [2] 



which shows that these methods exhibit significantly higher accuracy than keyword search, 
especially in smaller and incomplete data sets. 

The authors tokenized the retrieved descriptions and used them as documents for the TF/IDF 
matching. The corpus can be seen as all the descriptions in the database. When the scores 
were calculated with the sustainable descriptions as documents, and all descriptions as the 
corpus, a set of features characteristic of sustainable businesses’ descriptions was created. 

TF lets one understand what role the keywords play in a document, but its limitation is that it 
only uses the document itself as reference. Because of this, one does not know how the 
document ranks in the collection. TF/IDF lets one ignore the general features of the 
collection, as the focus is on the specifics of particular documents. This is applicable in web 
crawling, as the crawler operates on sets of retrieved pages to rank them on relevance, and 
even more so in Open Data retrieval, because the descriptions are necessarily homogenous 
in some regards, and finding the features related to sustainability appears more promising 
than a simple keyword search. 

2.5.3 Document Classification 
Supervised learning methods such as Logistic Regression and SVM can be applied to the 
retrieved features to find similar documents. The number of features, or words from the 
dictionary that are used varies depending on the purpose. Unlike in keyword matching, one 
does not decide on the keywords that shall be used; the algorithm takes e.g. 100, 1000 or 10 
thousand most common features from the training set, and searches the test set for their 
instances to classify the documents. Depending on the application, a different number of 
features is used, and the more general the classification, the less features need be used to 
find correlation [3]. In this case, the application is very domain specific, so it is reasonable to 
use in excess of the 3000 most common words to find a usable correlation. 
  
For classification, the authors implemented several Naïve Bayes classifiers, Linear Models of 
SGD and Linear Regression, Logistic Regression, and Support Vector Machines. This is based 
on other research in the area, and a comparison of the results with those of [2] is in the 
evaluation section. 

All Naïve Bayes classifiers are based on the idea of independent probabilities, but the 
mathematical background differs. This research employed a Multinomial NB which does not 
use the vector of samples (features) directly, but calculates a polynomial that most accurately 



matches the feature set. Bernoulli NB was also used, which treats features as booleans rather 
than frequency values. The hypothesis is that Bernoulli would perform the best, as it gives 
more importance to the existence of certain features, such as the keywords beforehand, than 
the frequencies of these. This is especially useful for shorter texts and smaller sample sizes, 
which is the case in this data set. SGD and Linear Regression yield a baseline for the hyper-
linear methods that are employed – Logistic Regression and Support Vector Machines. 

2.5.4 Input for Classifiers 
Every supervised classifier needs two categories of classification; positive and negative 
examples. The issue with the data sets is that only examples known, or likely, to be positive 
are available, as there are no databases containing businesses of similar category that are 
known not to be sustainable. This lack has been mitigated using improvised methods which 
are not industry standard, but applicable in this case. The authors came up with three 
categories. The first category encompasses documents which are said to describe sustainable 
businesses according to the sources described in the previous paragraph. The second, new 
category, is descriptions which are unlikely to be associated with unsustainable businesses –
 this category was created based on the keyword search. This method creates significant bias, 
and it is only justified for testing the software, to augment the database which would 
otherwise be too small to use. When the tool is used on new datasets, the user is responsible 
for the training set consisting of independent examples and not being an effect of any other 
prior classification. The authors justified using this suboptimal method by the goal of the 
research, which is not to produce accurate results per se, but to explore different 
technologies in the field. 



3 Results and Evaluation 

3.1 Experimental Setup 

The experiment was run in accordance with the research community guidelines. The authors 
did have expectations as to the performance of the methods, but could not estimate their 
rendition in this case specifically. Therefore, the programs were run on the data sets 
sequentially, independent of each other, the results being juxtaposed with each other. 
Because the data sets were suboptimal, the programs were also run with external data sets to 
obtain more accurate results and reduce bias in performance measures. 

Listed in Table 1, are the nine URLs the crawler was deployed on, suggested by the people in 
the Information Retrieval and Sustainability community. The cutoff depth of the search tree 
was chosen to be 8, with a time limit of 60 minutes. It was found to be the greatest depth 
where the crawler would terminate within the time limit for most starting URLs, and the 
greater the depth, the more results are acquired. To evaluate the JSON parser and the 
keyword search, the authors scraped several databases of Open Data Amsterdam 
(data.amsterdam.nl), which was dictated by the local character of the search effort and the 
type of desired results. Term frequencies were used to assign relevance scores to retrieved 
entries. These entries were then stored, and categorized using keyword matching into 
possibly relevant and irrelevant, which was subsequently used to build the corpus for testing 
the Machine Learning methods. Each classifier was run 100 times to minimize the effect of 
unaccounted variance in performance measurements on the results, and an 80% to 20% 
training set to test set ratio was used, because the data set was relatively small. The authors 
used the data set “movie_reviews” from the NLTK corpora library with a 90%-10% train-test 
ratio to evaluate the classifiers’ performance, as it is a larger, and better pre-processed data 
set. 

3.2.1 Keyword Crawl 

Table 1: Relevance and Coverage of Focused Crawling from origin URL

starting URL # retrieved URLs # relevant URLs % relevance comments

iens.nl 63 8 12.7 stopped manually

thenextgeneration.nl 0 N/A N/A blocked

puuruiteten.nl 26 7 26.9 -

starting URL

http://data.amsterdam.nl
http://iens.nl
http://thenextgeneration.nl
http://puuruiteten.nl


The results show very low relevance, and have taken a very long time to be collected. One 
could achieve similar results randomly following links on each page which is, in essence, what 
the crawler does. Getting responses from the server has taken prohibitively long, rendering 
the crawler unusable. 

Many sustainability-related websites feature little relevant keywords, while many other 
keywords are not specific enough. Sentences are written in a way that makes it clear for 
humans, but would require very advanced natural language understanding from machines to 
interpret the text as having to do with sustainability. This poses a significant limitation to the 
power of keyword-based scraping applications. 

A significant challenge is distinguishing the classes in the website constituting textual 
content. Some pages within a single sample website have paragraphs in divs of class names 
as varied as content, item-ct, item-content, or ct. Searching for the incorrect div type yields no 
results. If such discrepancies can be found among pages of the same domain, then it is next 
to impossible to index all the content-bearing category names from different domains and 
pages that the crawler can encounter. 

Finally, certain websites only allow user agents and throw an exception, even if the crawler 
masks itself as a web browser using the custom headers. 

It is hard to objectively evaluate the crawler’s performance, as the task that it performs is 
inherently different from that carried out by the other parts of the tool. Its findings are not pre-
determined by the entries in an existing document, and they differ based on the entry point. 
However, one criterion of evaluation is usability, and due to its limitations in flexibility, speed, 
and volume of results, it receives a very low usability score. 

3.2.2 Keyword Scrape 

yelp.com 27 4 14.8 -

foursquare.com 21 3 14.3 -

google.com (search) 90 2 2.22 stopped manually

bewustindebuurt.nl 16 4 25.0 -

marqt.com 8 1 12.5 only own domain

# retrieved URLs # relevant URLs % relevance commentsstarting URL

http://yelp.com
http://foursquare.com
http://google.com
http://bewustindebuurt.nl
http://marqt.com


#entries in DB – total number of entries in the database 

#pos retrieved – number of entries marked as relevant based on keywords and retrieved 

#likely positive – number of entries that are likely relevant, based on Google search and cross-

referencing with other classification methods 

#true pos – number of entries in the intersection of “pos retrieved” and “likely pos” 

% recall – percentage of entries in “true pos” that are also in “pos retrieved” 

% coverage – percentage of entries in “true pos” that are also in “likely pos” 

Table 3: Relevance score example: 10 highest scoring 
businesses 

This version has been the most successful attempt at 
retrieving information about sustainable businesses from 
any source so far. As it appears in Table 3, the relevance 
score is only a preliminary measure, and does not have 
to relate in a meaningful way to the real world criteria 
classified on, but it does show that the entry is a 
potential candidate, and it can be used to find out more 
about the entry and verifying its classification. The 
authors found the usability of the tool to be very high, 
because thanks to the database, the user can access any 
available data related to the entry, such as address and 
contact details of an establishment. 

To evaluate usability in terms of added value, the authors Google searched the names of 25 
retrieved places from Table 2 (~ 10% of the total result space) to see whether they could 
easily be found if not for the program. Of the 25 establishments, 18 had some form of 
individual media presence, that is, own website, a Facebook page, Twitter account, or a 
Google Maps pin with at least an email address and a phone number. 5 of those had their 
own website. Only 7 pages profiled the business as sustainable (descriptions, images, etc.). 

Table 2: Keyword Scrape Results

Database # entries 
in DB

# pos 
retrieved

# likely 
pos

# true 
pos

% recall % cov.

EtenEnDrinken 752 246 309 199 80.9 64.4

Shoppen 597 155 202 99 63.9 49.0

UitInAmsterdam 341 83 60 43 51.8 71.7

Name Score

Bar Loulou 23.0769

YAY Health Store & More 21.4287

Koffie Academie 21.4286

Lokaal Spaanders 18.1818

Spirit Amsterdam 18.1818

Frits 17.6472

Staal 16.6668

LAVINIA Good Food 16.2792

Restaurant Moer 15.3846

Het Zwaantje 14.2857



Therefore, the authors concluded that the tool has a significant impact on discovering entries 
that would not otherwise be discoverable. The added value of the tool is very high. 

As much as cross-checking with existing sources is possible, the obtained results do appear 
in the databases of bewustindebuurt.nl, thenextgeneration.nl, puuruiteten.nl, and iens.nl with 
the biologisch (organic) tab selected, as mentioned in Table 2. Close to 100% of the entries 
on these websites appear in the results obtained. The other way around, the correlation is 
much lower, as none of these databases is as comprehensive as this paper’s results set. 

3.2.3 Augmented Keyword Scrape 
Enhancing the keyword set with synonyms (words carrying a similar meaning) and hypernyms 
(superordinate words) appears very promising, but it has its caveats. WordNet is an English 
language lexicon. An alternative framework for Dutch is OpenDutch WordNet, but it is 
incompatible with Python versions below 3.2x, while the other modules used are 
incompatible with Python versions above 2.7x. To circumvent this issue, the paper attempted 
to use the English descriptions of places, however, only about 60% of entries in the data set 
has those. Another attempt was made by translating the keywords and description to English 
using py-translate, but because the translation module is not aware of the context in which 
the words are used, the resulting matches were wholly insupportable. This prevented us from 
obtaining meaningful quantitative results. Therefore, the paper only offers a qualitative 
description of how the method has influenced the results, and how it can be used in the 
future to collect better data. 

Attempting to put aside the bias and deviation introduced by translating the results or 
incomplete English language descriptions, it can be shown that the influence of synonyms 
and hypernyms on the results is related to the extended set. It can be done either with the set 
of keywords themselves, or by finding synonyms for all words in the description sets (after 
filtering out stop words etc.). In the first case, as expected, since a larger set of keywords is 
used, the results differ, and are larger in volume. In the latter case, the results remain the 
same, but their relevance scores change, and the order shifts, placing some results from 
previously as low as the bottom quarter of the table in its top 25%. The mean relevance score 
increases by about 100% in this approach. 

3.3 TF/IDF “Most Useful Features” 
LHS: Table 4: 10 most informative features, as identified by the NB classifier 

http://bewustindebuurt.nl
http://thenextgeneration.nl
http://puuruiteten.nl
http://iens.nl


RHS: Table 5: 10 most informative features, as identified by the NB classifier, with the keyword 
features removed 

Because the keywords were previously used as a qualifier for the positive set, it should come 
as no surprise that many of the features discovered by the Naïve Bayes algorithm listed in 
Table 4 are the keywords themselves. However, the results have also showed some features 
with very high positive to negative ratios that were not seen before, such as, among others, 
“licht” (light, adj.), “inspireren” (to inspire), “houtoven” (wooden oven), “voel” (to feel), and, 
apparently, “worstjes” (little sausages). Most examples are positive, as words describing 
sustainability tend to stand out, while the descriptions of negatives are rather homogenous 
[3]. Table 5 shows the effect of removing the keyword-induced features from the feature set. 

3.4 Classifier Results for NB, Linear, Log. Reg., SGD, SVMs 
The following are the results of the different classifiers, with 80%-20% training set to test set 
ratio for the “sustainable” data set. On small data sets, this ratio is considered the best [2], as it 
minimizes the bias and variance on the test set. Because “movie_reviews” is a bigger data set, 
the paper used a 90%-10% ratio, which would result in high performance estimate variance if 
the set were too small, but is appropriate for its size. The classifiers have been run 100 times. 
The document set has been reshuffled after every run to prevent training and testing on the 
same data or duplicate results. 

feature class ratio

huisgemaakte pos : neg 25.9 : 1.0

keuze pos : neg 24.4 : 1.0

kwaliteit pos : neg 21.5 : 1.0

vers pos : neg 20.0 : 1.0

licht pos : neg 15.6 : 1.0

gezonde pos : neg 14.1 : 1.0

inspireren pos : neg 12.6 : 1.0

houoven pos : neg 9.6 : 1.0

voel pos : neg 8.1 : 1.0

worstjes pos : neg 6.7 : 1.0

feature class ratio

houtoven pos : neg 9.6 : 1.0

voel pos : neg 8.1 : 1.2

extra pos : neg 6.7 : 1.6

vijf pos : neg 6.7 : 1.5

strakke pos : neg 6.7 : 1.4

jong pos : neg 6.7 : 1.3

best pos : neg 6.7 : 1.2

worstjes pos : neg 6.7 : 1.0

iedereen pos : neg 6.1 : 1.0

open neg : pos 5.9 : 1.0



Q1 – First quartile of the distribution (top 75%) 
Q3 – Third quartile of the distribution (top 25%) 
IQR – Inter-Quartile Range 

The data set is extremely small for the purpose of classifier training. As shown in Table 7, there 
are only have 246 positive examples (joint categories I and II) and 520 negative examples, of 
which 274 were randomly removed to give parity to positive and negative examples. 

Table 6: Classifier Accuracy (%) across 100 runs on “sustainable”

Classifier Accuracy (%) mean Q1 Q3 IQR (Q3-Q1)

NB 97.3 95.2 99.1 3.90

MNB 95.5 94.3 96.6 2.30

Bernoulli 85.5 84.1 95.7 11.6

Log. Reg. 98.4 96.1 99.3 3.20

SGD 95.7 93.7 99.3 5.60

SVC (SVM) 71.2 66.5 75.5 9.00

Linear SVC (SVM) 98.6 96.1 99.2 3.10

Nu SVC (SVM) 95.7 95.4 97.9 2.50

Table 7: Classifier Accuracy (%) across 100 runs on “movie_reviews”

Classifier Accuracy (%) mean Q1 Q3 IQR (Q3-Q1)

NB 82.5 81.9 83.9 2.00

MNB 88.1 87.4 88.3 0.90

Bernoulli 86.3 82.5 90.0 7.50

Log. Reg. 93.0 91.7 94.5 2.80

SGD 78.6 75.7 79.1 3.40

SVC (SVM) 50.0 49.8 50.9 1.10

Linear SVC (SVM) 96.6 94.2 97.1 2.90

Nu SVC (SVM) 90.2 89.8 91.0 1.20



For evaluation purposes, the authors removed the features corresponding to the keywords 
from the trained classifier feature set before classifying the test set in some runs. This 
significantly reduces the bias induced by the practice described in the previous paragraph. 

Both the homogeneity of the descriptions in the data set, and its size, contribute to the high 
perceived accuracy of the classifiers. One can, however, also notice that the average IQR for it 
is almost twice as high as when classifying movie_reviews (5.15 vs. 2.73), showing that 
classifying the data set suffers from greater inconsistency and uncertainty. In both cases, SVC 
SVM has the lowest accuracy (Table 6). Interestingly, SGD is the second worst performer in the 
test data set, yet it achieved one of the best accuracies in the data set. With both data sets, 
Bernoulli NB has the highest accuracy IQR (11.6 and 7.5), while the most consistent 
performance is maintained by the Multinomial NB (2.3 and 0.9). Linear SVC SVM performs the 
best on both data sets, and shows a high degree of consistency. While in this small data set 
the difference in training times the Naïve Bayes classifiers and Support Vector Machines is 
insubstantial, it becomes visible in the large movie_reviews data set (Table 7). However, the 
performance advantage is also much more significant in the latter, making the Linear or Nu 
SVMs a better choice, unless time is of essence, so as it may be the case in a strict real-time 
system. 



4 Discussion and Further Development Suggestions 

4.1 Crawling and Keyword Scraping 
The issues mentioned in section 3 cannot be easily resolved with the current state of the Web.  
Rather, they point to the weaknesses of crawlers when they are deployed on web content of 
unknown structure. This paper’s finding is that a crawler without a heuristic cannot match the 
performance of focused crawlers, even if very good algorithms are used for filtering the 
results, because the results cannot be collected efficiently enough to make them useful. 
Embedded linked data could help build ontologies and add structural information to the 
crawled websites which could result in more targeted and efficient crawling. 

As far as the speed is concerned, a remedy could involve concurrency and a branch-cutting 
algorithm. The tree of links followed by the crawler can be represented as a binary search 
tree. In this crawler, the main thread crawls the pages, while worker threads scrape the 
content and report back on its  relevance. If a page’s relevance is below the cut threshold, the 
URLs followed on that page will not be followed and the branch will have reached a dead 
end. This idea has the potential to increase the speed of crawling while also augmenting 
accuracy. 
  
4.2 Classifying, finding similar documents 
The primary challenge of identifying documents based on similarities is building a large, 
unbiased corpus for extracting features for classification [7]. In the case of this paper, the data 
set is small in size and biased due to keywords being used to create the positive and negative 
categories. 

The authors have therefore removed the keywords from the feature set to counteract the bias, 
which has led to increased reliability in results. Even so, the distinction between positive and 
negative documents was clear to most classifiers. This can likely be attributed to their 
homogenous characteristics; unlike the websites classified in [2], or the documents from an 
indefinite domain used in [5], the descriptions in this research all share a very similar 
structure, and those related to sustainability tend to stand out. That is why the relatively 
simple mechanisms behind Naïve Bayes classifiers are not surpassed by much by the more 
complex Logistic Regression or Support Vector Machines in this case. Extrapolation to higher 
dimensions brings little advantage when the distinction between features on a place is well 
visible [13]. When evaluating the methods using the NLTK corpus “movie_reviews”, which is a 



bigger and more diverse set, the results painted a different picture, and confirmed the 
performance of classifiers established in [2, 12]. 



5 Conclusion 
Web crawling and document scraping, with today’s tools and the current state of the 
Worldwide Web, is as much an art as it is a science. The biggest disadvantage of general 
crawlers is their blindness – they follow every URL within specified domains, regardless of how 
relevant it may be, because the crawler cannot assess the relevance before the page is 
crawled. While focused crawlers try to counteract that with a search heuristic, that restricts the 
flexibility of the crawler, making it inapplicable to unstructured sets of links with unknown 
domains [1, 3]. The variety of tags used for content in websites, text-infused images, and bot 
blockers all serve to diminish the effectiveness of crawling. That is why this paper suggests to 
always use documents with structured data, if such are available. Documents in JSON or CSV 
formats can easily be converted to dictionaries, ordered, and searched using any Natural 
Language Processing and Machine Learning method, or a combination thereof.  

The inherent limitation of this project is its pioneer nature – as the data set is concerned with 
sustainability, it is limited; consequently, the accuracy measurements have low reliability, and 
the Naïve Bayes classification, Logistic Regression, and Support Vector Machine accuracies do 
not follow the usual pattern for text classification. The authors, however, found Logistic 
Regression and Linear SVC SVMs to be the most accurate, and thus recommend those 
methods when interpreting incomplete data sets that have not undergone thorough pre-
processing. The research community is divided as to the usability of SVMs for binary 
classification [11, 12], but when evaluating on an external data set, the research in this paper 
managed to reproduce the results obtained in [2, 12], and found Support Vector Machines to 
perform the best, unless a large number of documents is used, in which case Naïve Bayes and 
keyword matching show similar accuracy. Thanks to the flexibility of the software that was 
built, the program can be used on any data set, both for evaluation purposes and for real 
world applications. 
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Appendix A: Source Code 

The code can be found in the GitHub repository https://github.com/jfdeverne/Bachelor-
Project. This section describes the workings of the tool, and the tool is equipped with usage 
guides. Argument “-help” prompts explanations for all modes. 

The Web Crawler takes as arguments (1) a list of keywords and (2) a URL of the initial 
webpage. The Keyword Scraper requires (1) a list of keywords as well, and (2) a URL of 
the .JSON file with the data for scraping. The Corpus Builder parses the entries in a .JSON file 
into a corpus that can be loaded and used with NLTK and SciKit. It takes (1) a list of keywords, 
(2) a list of entries’ names known to be positive (“verified positives”), and (3) the target .JSON 
document. The classifier consists of two parts. features_train.py loads the corpus, extracts the 
features, trains the selected classifier, and save it in a .pickle file. features_train.py also takes 
an optional list of keywords as argument, if it is provided, it excludes the corresponding 
features from the feature set used for training, to reduce bias. features_test.py can then be 
used to classify input using the pre-trained classifier. The Corpus Builder names the files after 
the entries’ names, so the output of features_train consists of all the file names (entry names) 
classified as positives.


