The Semantic Web in an SMS

Onno Valkering, Victor de Boer, Gossa Lo,
Romy Blankendaal, and Stefan Schlobach

Vrije Universiteit Amsterdam, the Netherlands
o.a.b.valkering@student.vu.nl, v.de.boer@vu.nl, a.g.lo@vu.nl,
r.a.m.blankendaal@student.vu.nl, k.s.schlobach@vu.nl

Abstract. Many ICT applications and services, including those from
the Semantic Web, rely on the Web for the exchange of data. This in-
cludes expensive server and network infrastructures. Most rural areas of
developing countries are not reached by the Web and its possibilities,
while at the same time the ability to share knowledge has been identified
as a key enabler for development. To make widespread knowledge sharing
possible in these rural areas, the notion of the Web has to be downscaled
based on the specific low-resource infrastructure in place. In this paper,
we introduce SPARQL over SMS, a solution for Web-like exchange of
RDF data over cellular networks in which HT'TP is substituted by SMS.
We motivate and validate this through two use cases in West Africa. We
present the design and implementation of the solution, along with a data
compression method that combines generic compression strategies and
strategies that use Semantic Web specific features to reduce the size of
RDF before it is transferred over the low-bandwidth cellular network.

1 Introduction

The Semantic Web by design builds on, and relies on, the Web infrastructure for
data exchange. This includes sophisticated server and network infrastructures
which are unavailable in many rural areas of developing countries. These areas
are not reached by the web and its possibilities while at the same time the ability
to share knowledge has been identified as a key enabler for development. To make
knowledge sharing possible in rural developing areas, the notion of the Web has
to be downscaled based on the specific low-resource infrastructure in place [6].
Data sharing solutions, such as those based on Semantic Web and Linked
Data technologies, should not only be accessible to those with abundant resources
and reliable infrastructures, but also in low-resource environments. The flexible
graph models of the Semantic Web and its language-agnostic nature make it es-
pecially useful for data sharing in these location, because of the many different
spoken languages and customs. In [2] we show that locally produced market data,
stored as RDF, is produced through, and used in, a voice-interface accessible for
low-literate users in their preferred language. We also identified opportunities

for data sharing and integration. More recently, we developed the Kasadakal,
a low-resource prototyping and computing platform which uses semantic tech-
nologies specialized at developing multi-modal user interfaces, e.g. touchscreens
or voice, for low literacy in rural areas of development countries. While this
widens the applicability and possible use-cases, a core problem remains; the lack
of infrastructure for Web-like sharing of information in the targeted rural areas.

The main challenge lies in the unavailability of network connections. Espe-
cially in many rural areas of developing countries, internet connections are either
missing or extremely unreliable. Internet penetration is estimated to be 28.6%
of the population in Africa as a whole (compared to 52.8% in the rest of the
world), with some countries reaching considerably less of their population: for
example 7.0% in Mali2. These numbers include both urban and rural areas and
in the latter, internet penetration is virtually non-existent. The Semantic Web is
built on top of the Internet (TCP/IP) and Web infrastructure (including HTTP)
and as such when no Internet is available, it is unusable. However, we can de-
sign solutions to implement Web-like data sharing using alternative networking
capabilities available in low-resource environments.

We present a specific downscaling solution for exchanging (RDF) data in
which HTTP is substituted by SMS to enable Web-like exchange of data over

cellular networks. We show the viability of this solution in two different ways:
1. Technological: we identify three main technological problems when using an

SMS protocol as semantic data transfer protocol, message size, the asyn-
chronous nature of the protocol and how to deal with pagination issues. Our
solution is validated w.r.t. each of those problems with a variety of methods,
which includes a large-scale empirical comparison of compression size.

2. Societal: Using two use-cases from Sub-Saharan Africa (one from Ghana,
one from Mali) we will show how SMS-based Semantic Web can practically
address the knowledge sharing needs of rural communities. We introduce
these in Section 3 and validate our solution against these cases in Section 6.

While in this paper, we present a practical solution to low-bandwidth knowledge
sharing, our investigation will also be more generally useful to understand how
Semantic Web principles and practices can be separated from the infrastructure
layers that often are assumed to be prerequisites.

2 Related Work

SMS as a data channel has been proposed in other ICT for Development (ICT4D)
cases, for example in [8]. Mobile banking -including through SMS- has been well-
established in many developing economies (cf. [10]). A number of Social Network
Services such as Twitter, Facebook as well as the Google search engine allow
for accessing those services through SMS2. Mostly, this deals with machine-
to-human interaction and not, as in our case for machine-to-machine (M2M)

! nttp://www.kasadaka.com. “Kasadaka” roughly translates to “Talking Box” in a
number of Ghanaian languages

as of November 2015 http://www.internetworldstats.com/

3 http://www.digitaltrends.com/mobile/sms-your-way-back-to-the-web/

2

interaction. Related work in semantic data exchange in low-resource network
environments includes the Entity Registry System (ERS) [3], an open-source en-
tity registry specifically designed for environments with ad-hoc and/or unreliable
network connectivity, as is often the case in rural areas. It allows for Linked Data
without using the centralised components that make up the Web infrastructure.
ERS has mechanisms to deal with interval-based network connectivity (e.g. a
mobile truck that functions as an access point) and is resistant against packet
loss. DakNet provides similar solutions where ad-hoc wireless networks are com-
bined with asynchronous networking, also including mobile access points [11].
Whereas these solutions also implement Web-like data exchange without Web
infrastructure, they focus mainly on local networks and rely on the availability
of partial Internet connectivity.

Another way of transferring data without Internet is through so-called Sneak-
ernets, where data is exchanged by physically moving removable media or hard
disks. For large-scale non-immediate data transfer, this is a viable solution [5]
which can be combined with solutions such as the one presented in this paper.

In this paper, we focus on semantic data exchange using the SPARQL proto-
col. There are other opportunities for accessing RDF data over a network. Two
examples are simple URI dereferencing and the use of Linked Data Fragments
[13]. Compared to these methods, accessing RDF using SPARQL typically takes
more computing resources on the client and server devices itself, but allows for
more fine-grained querying by which bandwidth can be limited. For our specific
cases, saving bandwidth is a key issue, which is why we use SPARQL. It is inter-
esting to further investigate the trade-off between computational and networking
resources in these specific ICT4D cases.

3 Information Sharing in the Absence of the Web

As early as 2011 we pointed to some negative effects of the Semantic Web’s
reliance on Web infrastructure [6], which effectively made this technology inac-
cessible for a majority of the world population. Through a number of research
projects in Sub-Saharan Africa we have since then identified numerous use cases
that rely on knowledge sharing. The recent Kasadaka project builds on infor-
mation acquired in Burkina Faso, Mali, Ghana and Niger and aims at providing
information to people living in rural communities for several different use-cases.
It provides a generic platform, which enables voice- and SMS-based communica-
tion over GSM and can be deployed in communities and owned and maintained
by local stakeholders. The platform can host different information sharing ser-
vices, accessible through simple icon-based visual interfaces or voice interfaces
callable from any mobile phone as users especially those in remote rural villages
are often low-literate and speak local languages.We regularly ran into concep-
tual and technical problems for which the Knowledge Engineering community
has already provided robust methods, as most real use cases require data and
knowledge sharing across communities and devices. We here describe two cases
that have been co-developed with local stakeholders in rural West Africa.

3.1 The DigiVet Case

One of the information needs identified for and by rural farmers is on animal
health, in particular on diagnosing animals. DigiVet is a voice-based veterinary
information service that support subsistence farmers in making the decision
whether or not to visit a veterinarian. Animal diseases spread within and between
villages and can often be cured merely with the intervention of a veterinarian.
The problem that arises in these rural areas is that local expertise is often lack-
ing and poor infrastructures (poor roads, lack of electricity) prevent access to
information and sharing of knowledge. Farmers need information on animal dis-
eases, disease patterns, diagnosis and symptoms to take preventive action and
preclude cattle loss, but this cannot be shared easily over large distances.

DigiVet includes a simple interface which presents farmers with a set of symp-
tom related questions on a touchscreen. It is based around a knowledge base*
developed by interviewing veterinarians working in rural Northern Ghana. The
system provides a diagnosis whether or not a farmer should contact a veterinar-
ian. DigiVet relies on semantic data exchange between farmers and veterinarians
at large distances. While the used Kasadaka platform is suitable for the creat-
ing the interface for diagnosing, there is currently no technology to cater the
necessary semantic data exchange.

3.2 The RadioMarché Case

The RadioMarché case, introduced in [1], is a market information system de-
signed to gather and distribute information about offerings of specific produce
on local markets in the Tominian region of Mali. To allow low-literate stake-
holders to retrieve market information in the absence of internet connection,
a voice-accessible service was built that can be called from any mobile phone.
The service can be called by local farmers in their own language to retrieve this
information. Community radio hosts retrieve and broadcast local offerings on
the radio. The system was developed and deployed in 2012 [7]. The gathered
product offering data was ported to the RDF data model and a Semantic Web
compliant version was developed. The benefits of linking market data to exter-
nal data sources and using this for visualization and improved data analyses, in
particular for stakeholders such as NGOs or bulk buyers is described in [2].

4 A Platform for Semantic Web in an SMS

Our goal is to make the use of Semantic Web applications possible in areas
lacking an infrastructure to support Web-like exchange of data. The intent is not
to create an isolated network that mimics Semantic Web practices, but rather to
develop a mechanism that supports the retrieval and manipulation of RDF data
across different kind of networks infrastructures. We want to achieve this without
imposing additional network-specific operations for application developers. This

4 https://github.com/biktorrr/digivetkb

means that applications can still be developed for HTTP, the mechanism sits
in between, converting messages to be able to cross the specific low-bandwidth
network in place, without requiring the application to be adjusted.

4.1 SPARQL over SMS

The rural areas in West Africa targeted by our use cases only have cellular
networks available for digital communication. Applications deployed in these
areas can make use of SMS for M2M transfer of data, instead of HTTP as part
of a Web-based network. Noteworthy practical differences between SMS-based
networks and Web-based networks are:

— SMS-based network agents are identified by phone numbers instead of URLs;

— The size of an SMS is limited up to 160 bytes®;

— SMS implements a one-way messaging pattern, whereas HT'TP implements
a request-response messaging pattern.

To transfer HTTP messages, produced by Semantic Web applications, over a
SMS-based networks, a conversion mechanism is required. This mechanism, in
addition to the above-mentioned differences, must take into account these case-
specific requirements:

— the number of messages sent should be as low as possible, in view of costs;
— the mechanism should be possible to run on affordable hardwareS.

Although the costs per transferred byte are relatively high for SMSes, it builds
on existing infrastructure which has a global reach including many rural areas
of development countries. Also, the required hardware to be able to send SMSes
is affordable and widely available.

Our implementation of the described mechanism is called SPARQL over
SMS. By supporting the CONSTRUCT and INSERT/DELETE DATA query
forms a basic usage of Semantic Web for M2M communication is realized. We
select this subset of SPARQL as it involves simple data transfer using RDF
triples. SELECT query responses (where they are not part of a CONSTRUCT
query) take the form of result tables of arbitrary sizes and are harder to optimize.

Figure 1 gives an overview of SPARQL over SMS. In the context of SPARQL
over SMS, application that can both send and receive SPARQL queries are called
agents. The converter is a key component responsible for the conversion between
an HTTP SPARQL request and an SMS-optimized equivalent. Different options
for sending and receiving SMSes are supported by the converter, such as a GSM
dongle or an online SMS service. This allows the converter to be deployed in
various scenarios. A converter deployed in a data-center could be used to share
data with a triple store running on low-resource hardware deployed in the field.
This can be useful when aggregation of data from multiple devices is desirable.

® Based on the encoding used: 8-bit supports 140 characters, 7-bit up to 160 characters.
5 Such as a Raspberry Pi computer: https://www.raspberrypi.org.

Fig. 1. SPARQL over SMS Overview

] EEE——
~ -
Triple Converter Converter Triple
HTTP: HTTP
Store (dedicated) (dedicated) Store
Agent Agent

Converter
(shared)

Network

A converter instance supports two modes: shared and dedicated. A dedicated
converter maps a phone number directly to a particular agent, making it possible
for the agent to both send and receive SPARQL queries. Shared converters can
serve multiple agents, so that a phone number (assigned to a single GSM dongle)
cannot be mapped to a single agent. In this case, the agents can only perform
outgoing SPARQL queries but cannot be the target of incoming queries. Sending
SPARQL queries requires an endpoint URL identifying the target receiver. To
allow the targeting of an agent in an SMS-network, the converter can provide a
URL representation of an arbitrary phone number. For example, the format of
a SPARQL endpoint URL is: http://{ converter hostname} /agent/{phone num-
ber} /spargl. SPARQL requests sent to such an endpoint are captured by the
converter and sent to the phone number. The converter then receives the query
and runs it on the triple store of the associated agent. The result is then send
back to the initial converter which returns is as the response to the SPARQL
request in the specified format.

4.2 SMS message structure and conversion

SMSes sent between converters follow a specific structure. Five characters of
each SMS are reserved for metadata for which the basic 7-bit character set, as
specific by the GSM 03.38 character set”, is used. This includes the message
type, message identifier, and position for multi-part messages. Excluding the
non-print characters there are 125 different characters left that can be used. A
single character can thus express a numerical value of 1 to and including 125.
HTTP to SMS The converter creates optimized representations of HTTP
SPARQL queries and results. In the case of a SPARQL query the encoding rou-
tine is based on the SPARQL query form to perform fine-grained optimizations.
The compact representation is optionally split into multiple SMSes if it exceeds
the character limitation of a single SMS. The position of each part will be in-
dicated by the multi-part position character in the metadata. After conversion,
the compact representation is send over SMS to the phone number extracted
from the endpoint URL used to send the SPARQL query to the converter.

" http://wuw.3gpp.org/DynaReport/23038.htm

SMS to HTTP When a converter receives an SMS, HTTP representations
are reconstructed. As different encoding routines might be used, the appropriate
routine is based on the message type defined in the metadata. Decoding can-
not guarantee a result exactly identical to the original message. The resulting
message might thus not be syntactically equivalent, but it will be semantically
equivalent. Multi-part messages are concatenated based on the multi-part posi-
tion in the SMS metadata.

5 Research Challenges

In the design of our solution, converters are used to transfer SPARQL queries and
results between Web- and SMS-based networks. However, to develop a workable
solution, a number of challenges need to be addressed. In this section we outline
the different challenges, namely: how to reduce the size of RDF data to allow
for efficient transfer over SMS, issues around asynchronicity of communication
and how to deal with unpredictable query result sizes.

5.1 Small RDF Data Compression

The serialization format has a great effect on the size of an RDF file, and thereby
on the amount of SMSes needed to transfer the data. The costs associated with
SMSes restricts us to cases with small amounts of triples which. Still, to save
costs associated with the sending SMSes, we want to use the combination of
RDF serialization and compression that is most efficient, in terms of transfer
size, for such small RDF data sets.

Experimental Setup To identify the best serialization and compression
combination we run experiments on RDF data sets provided by the LOD Laun-
dromat [12]. These RDF files are crawled from multiple Linked Data sources,
making it a realistic representation of real-world RDF data sets. Our benchmark
consists of 232,822 RDF files with size between 1 and 1000 triples. This large-
scale experiment ensures that we test across many types of data sets and various
characteristics which might influence serialization and compression.

The files were converted to various serializations (RDF/XML, Turtle, HDT
and EXI). RDF /XML and Turtle are plain text serialization formats specifically
designed for RDF data. The binary format “Header, Dictionary, Triples” (HDT)
is a data structure developed to compactly store and exchange RDF data with-
out sacrificing the ability to query the data [4]. Efficient XML Interchange (EXT)
is a binary format designed to create compact representations of XML and has
been proposed for efficient RDF exchange in constrained embedded networks [9].
For each format, including the original N-Triples format, the file size is recorded
before and after applying gzip compression. The default implementations of RD-
FLib®, HDT? and EXIficient'? have been used.

® https://github.com/RDFLib/rdf1lib
9 https://github.com/rdfhdt/hdt- java
10 https://github.com/EXIficient/exificient

Results Table 1 lists per format the average file size w.r.t to the original
N-Triples format. The best compression per bin is marked bold. The binary
gzip, HDT and EXI formats include Base64 encoding overhead. We first look at
the results from the RDF files in the range of 1 to 100 triples (81,492 in total)
in bins of 10. As expected, the size reduction compared to the original format
increases with the number of triples, due to more syntactic redundancy. HDT's
are bigger than the original due to the HDT’s metadata. With files up to 30
gzip compressed N-Triples outperforms the other formats. Above 50 triples, the
compressed Turtle format outperforms compressed N-Triples. For sets between
30-60 triples, the uncompressed EXI format performs similar to compressed N-
Triples and compressed Turtle. Applying gzip compression to EXI hardly has
any effect and even increases the file size in most cases.

When considering RDF files between 100-1000 triples we note that gzip com-
pressed Turtle results in the best compression. In addition, RDF /XML stagnates
around 51% and Turtle around 36% of size compared to N-Triples. For files with
600+ triples gzip compressed HDT drops below the size of EXI, at the cost of
losing the ability to directly query the HDT files due to an additional layer of
gzip compression. We conclude that for the smallest data sets (<40 triples), gzip
compressed N-Triples is preferable. For data sets between 40-1000 triples, gzip
compressed Turtle serialization scores best. The reason N-Triples performs bet-
ter than Turtle for the smallest data sets can be the added overhead of prefixes
in Turtle!!. In our implementation, we decided to dynamically select the appro-
priate serialization (N-Triples or Turtle) based on the number of triples in the
SPARQL result.

Table 1. Results of the LOD Lab compression experiment (N-Triples = 100%).

No. N- RDF/ RDF/ Turtle Turtle HDT HDT EXI EXI Comb.

Triples Triples XML XML +Gzip +Gzip +Gzip [method
+Gzip +Gzip

1-10 50.7 103.8 77.0 102.0 70.3 495.5 180.1 57.5 65.9 44.2

11-20 22.5 62.0 27.1 50.5 24.2 122.2 47.0 23.3 24.9 18.9

21-30 16.2 58.2 18.5 48.7 16.3 79.5 31.1 16.5 17.5 13.6

31-40 28.3 69.1 30.9 62.1 28.6 86.5 40.7 28.2 29.1 23.5
41-50 9.8 51.2 10.2 42.3 8.6 38.1 14.8 9.3 9.7 8.0
51-60 17.2 59.2 17.5 50.1 15.9 50.5 22.8 15.8 16.3 8.7
61-70 11.8 58.5 12.4 42.4 10.0 43.0 17.7 11.1 11.6 6.0
71-80 8.8 54.8 8.5 40.9 7.0 31.6 11.2 7.5 7.8 6.4
81-90 6.7 52.0 6.3 40.6

(S
=
[\
ot
'S
©©
—
(<28
oo
[=2]
o
~
'S

91-100 8.1 54.9 7.6 40.4 6.2 . .

101-200 |8.8 62.0 8.3 39.2 6.7 24.7 10.1 7.6 7.9 5.7
201-300 |4.8 50.8 3.6 39.0 2.8 13.4 4.0 3.6 3.6 2.7
301-400 |4.8 51.5 3.3 37.7 2.5 11.4 3.3 3.0 3.1 2.5
401-500 |4.4 51.5 2.9 37.4 2.2 10.4 2.7 2.6 2.7 2.2
501-600 (5.0 53.8 3.4 38.7 2.5 8.9 3.0 2.9 3.0 2.4
601-700 (4.1 51.0 2.5 35.9 1.7 8.5 2.2 2.3 2.4 1.7
701-800 |4.5 51.1 2.7 36.2 1.9 8.1 2.1 2.4 2.4 1.9
801-900 (4.4 51.1 2.6 36.4 1.8 7.9 1.9 2.3 2.3 1.8
901-1000 (4.1 50.9 2.4 36.5 1.7 7.7 1.7 2.1 2.1 1.7

11 The used Turtle serializer adds RDF, RDFS, XSD and XML prefixes by default.

5.2 Shared Vocabulary/Semantic RDF Data Compression

Section 5.1 focused on serialization and gzip compression. These generic strate-
gies consider only the syntactical representation of RDF. In order to reduce the
size of RDF data even more, we also tested two compression strategies focused
on RDF content-specific aspects. We do this on the basis of RDF vocabularies
that define reusable definitions for common properties and/or types.

Experiment Setup We experimented with 30 popular vocabularies'?. To
3,577 RDF data sets from the previous experiment dictionary-encoding and rea-
soning, based on the RDF vocabularies, was applied. The experiment had three
rounds with an increasing number of vocabularies (most popular 10, 20 and 30).
A single HDT file, containing combinations of vocabularies, is generated in each
round, for which the dictionary-component is used as dictionary encoding. Dur-
ing the encoding all the URIs that occur in one of the vocabularies are replaced
with a placeholder containing the identifier generated by HDT for an URI.

We use reasoning to find semantic redundancies in RDF data sets, based on
the vocabularies. The implemented reasoner searches for redundancies based on
twelve RDFS entailment patterns'?, as well as rules for two OWL properties:
owl:SymmetricProperty and owl:inverseOf. Semantically redundant triples are
removed from the data set. Only explicitly defined triples from the RDF data
set and vocabularies are considered. Therefore, it is not guaranteed that the final
result is always the smallest set of triples possible.

Results The two compression strategies are measured independently during
the experiment. Precondition for these compression strategies is that the sub-
jected RDF data set must use one of the considered vocabularies, which makes
that these compression strategies do not always have a size reducing effect.

Size reduction averages have been calculated only for results that led to an
actual size reduction, grouped by number of triples in bins of 100. Based on
these averages we have found that reasoning based on the top 10 vocabular-
ies has minimal effect, up to 3% average size reduction. Using an additional
10 vocabularies increases the average size reduction across all bins, resulting in
average size reduction ranging from 8.7% to 13.4%. Using the top 30 vocabu-
laries has no advantage over the top 20 vocabularies when using reasoning. The
dictionary-encoding achieves around 6.5% average size reduction based on the
top 10 vocabularies. This is slightly improved to around 8% when using the top
20 vocabularies. An additional, but minimal improvement, can be obtained when
using all the 30 vocabularies for dictionary-encoding. Furthermore, it stands out
that the dictionary-encoding could be used more consistently, 96% of the files
could be reduced by using dictionary-encoding against 31% for reasoning. Based
on these results we conclude that it is best to use the top 20 popular vocabu-
laries when using the reasoning and dictionary-encoding compression strategies.
The minimal improvement of using the top 30 for dictionary-encoding is not
commensurate to the increase of processing duration and maintenance efforts
introduced by the additional 10 vocabularies.

12 Tncluding YAGO, FOAF, and SKOS. Based on http://prefix.cc/popular/all.
3 https://wuw.w3.org/TR/rdf11-mt/#rdfs-entailment

We combined vocabulary based compression strategies with the generic com-
pression strategies from Section 5.1 to form a RDF compression method for
SPARQL over SMS. The LOD Lab data sets, as described in Section 5.1, have
been subjected to this combined method to measure the performance. The results
are listed in Table 1. It shows that the added reasoning and dictionary-encoding
strategies are especially effective when compressing the smallest RDF data sets
(1-200 triples). As the number of triples increases, the syntactical compression
strategies become more efficient and gradually make the vocabulary based com-
pression strategies less beneficial. This is also follows from Table 2, the added
vocabulary based compression provides a head-start in terms of the average
number of triples that can be sent per SMS. This holds up to 10 SMSes.

Table 2. Average number of triples that can be send based on the number of SMSes.

Nr. of SMSes|Only serialization Added shared
and compression vocabulary compression

1 0 0
2 3 3
3 6 8
4 9 16
5 21 24
6 66 84
7 84 98
8 116 126
9 175 189
10 301 301

5.3 Blending Synchronous and Asynchronous Messaging

SPARQL exchanges follow a request-response messaging pattern. When a query
is sent as a request over the network, the receiver processes the request and
composes a response with the query result. A single connection is used and kept
open during the transfer, making it a synchronous operation. Sending SMSes
follows a one-way messaging pattern. Each message is a standalone message
that not enforces a follow-up response. As the connection is terminated after a
message has been delivered sending of SMS is an asynchronous operation.

With SPARQL over SMS we want to seamlessly transfer messages from Web-
based networks to SMS-based networks and vice-versa. For this purpose, we need
to harmonize the two different messaging patterns. The initial implementation
of SPARQL over SMS keeps HTTP connections open during the data trans-
fer. After sending a SPARQL query over SMS, the converter waits until the
corresponding result response comes in. The query result response is of a differ-
ent message type, but it can be correlated to the original request by using the
message identifier for correlation.

This implementation is functional, but might not be a optimal considering
the deployment in rural areas described in our use cases. For example, due to
temporary loss of connectivity the response message might be available after
hours or even days. It is questionable if the low-resource hardware can hold
open multiple connections for that period. Even if it is capable of doing so,
there is a genuine risk of a sudden power outage that will result in a loss of

10

all open connections requiring retries. In our specific use-cases this would result
in additional, unnecessary, costs. Additional efforts are required to create an
asynchronous-supporting version of SPARQL for situations when a response is
not expected within a seconds- or minutes-long time span.

5.4 Unpredictable Query Result Sizes

A simple looking SPARQL query might yield an unexpectedly large result. To be
thrifty with sending SMSes, we want to restrict the amount of SMSes that will be
send. We have considered two options to achieve this, SPARQL pagination and
pagination on a SMS level. SPARQL provides the LIMIT, OFFSET and ORDER
BY keywords that can be used to implement pagination, but the SPARQL query
result will not include pagination information, e.g. the total number of results
available. This means it is not possible to tell if all results have been retrieved yet.
Another issue is the possibility for a triple to have a very long literal object that
can span multiple SMSes. Relying only on SPARQL pagination for regulating
the result size is not sufficient to regulate the number of SMSes send. Pagination
on the SMS level would only introduce the option to decide whether or not to
continue receiving the SMSes. Since a partial result from a complete SPARQL
result cannot be created: it is the whole SPARQL result or nothing. This would
also alter the way SPARQL over SMS must be used compared to the SPARQL
standard, due to the addition of pagination operations which can not be ignored.
With our implementation the SPARQL result is directly, after compression, send
through SMS. If the result does not fit in a single SMS it will split up the
message, on arbitrary points, into multiple SMSes. If a hard set restriction is
reached and stops sending SMSes the receiver cannot read the message properly
due to missing parts: partial results are not supported. Therefore, we consider
above-limit SPARQL results as an error.

6 Practical Validation

6.1 Implementation and Integration

SPARQL over SMS' is developed with integration with other services in mind
and can be deployed on various operating systems and devices. For validation,
we used SPARQL over SMS in combination with Kasadaka!®. This combination
runs on widely available and affordable hardware.

6.2 Evaluation in Four Scenarios

For the two use case in Section 3, we are developing services using Kasadaka
running on low-resource devices. The communication between two remotely de-
ployed devices is key. Our setup consists of two Raspberry Pi 2 computers with

4 https://github.com/onnovalkering/sparql-over-sms, available as open source
5 https://github.com/abaart/KasaDaka

11

both the DigiVet and RadioMarché'® data sets loaded in a ClioPatria!” triple
store. Four SPARQL queries that correspond to two scenarios per use case are
tested to determine the amount of SMSes required both with our RDF compres-
sion method and without (plain RDF/XML). To improve the shared vocabulary
compression strategies, the use case vocabularies are added to vocabularies used.

Extending the DigiVet application Combining DigiVet with SPARQL
over SMS adds new data sharing options. With two new scenarios, from the
perspective of the veterinarian, we demonstrate how the DigiVet application can
be extended using the new features. First we consider a veterinarian interested
in types and frequencies of animal disease symptoms occurring near Walewale,
Ghana. The SPARQL query in Listing 1.1 answers this question. Sending the
query requires 3 SMSes and yields a result of 7 triples. Returning the result
takes 3 SMSes with our solution (without compression it takes 14 SMSes). As a
second scenario for the DigiVet use case we consider the need of a veterinarian to
update the animal diseases knowledge base present on a DigiVet deployment. As
an example, the SPARQL query in Listing 1.2 can be used to add a new disease
(“Black Leg”) with associated symptoms to the triple store. Transferring this
query requires 3 SMS messages (5 without using compression).

Listing 1.1. Digivet SPARQL query for 1st scenario

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dv: <https://w3id.org/wdra/digivet/>

CONSTRUCT {
?sym dv:occurance_count ?count
}
WHERE {
SELECT ?sym (COUNT(?sym) as 7count) WHERE {
?person foaf:based_-near <http://sws.geonames.org/2294174/>

?person dv:has_case 7case
?case dv:has_symptom ?7sym

}
GROUP BY ?sym }

Listing 1.2. DigiVet SPARQL query for 2nd scenario

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf—schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dv: <https://w3id.org/wdra/digivet/>

INSERT DATA {
dv:black_leg a dv:Disease .
dv:black_leg rdfs:label ”Black_leg”@en
dv:Cow dv:canCarryDisease dv:black_leg
dv:Sheep dv:canCarryDisease dv:black_leg
dv:unwillingnessToMove dv:symptom_for_disease dv:black_leg
dv:rapidBreathing dv:symptom_for_disease dv:black_leg
dv:lameness dv:symptom_for_disease dv:black_leg
dv:appetiteLoss dv:symptom_for_disease dv:black_leg
dv:fever dv:symptom_for_disease dv:black_leg .
dv:swellingThigh dv:symptom_for_disease dv:black_leg .}

Extending the RadioMarche application For the RadioMarché service,
we consider two scenarios. The first involves the retrieval of the current offerings,

16°A clone of the store is available at http://semanticweb.cs.vu.nl/radiomarche/
7 http://cliopatria.swi-prolog.org/

12

including the phone number of the advertisers, in the Mafoune and Mandiakuy
regions of Mali. Using a CONSTRUCT query (Listing 1.3), this information is
retrieved as an RDF graph from a RadioMarché installation. Sending the query
through our solution requires 3 SMS messages (4 without using compression).
The query result consists of 152 triples in total and could be transferred using
8 SMS messages (121 SMS messages would have been required without com-
pression). This shows the economic impact of the compression step. As a second
scenario, we perform an INSERT DATA query (Listing 1.4) to add product la-
bels in more languages. The query creates ten new triples. Our solution requires
only 3 SMS messages, half of the uncompressed number.

Listing 1.3. RadioMarché SPARQL query for 1st scenario

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf—schema#>
PREFIX rm: <http://purl.org/collections/wdra/radiomarche/>

CONSTRUCT {
?contact rm:contact_tel 7tel
?contact rm: has_offering 7offering
?offering rdfs:label ?prod_name

} WHERE {
?Toffering a rm: Offering
?offering rm:has_contact 7contact
?offering rm:prod_-name ?prod
?prod rdfs:label ?prod_name
?contact rm:contact_tel 7tel
?contact rm:zone 7zone
FILTER (?zone IN (rm:zone_Mafoune, rm:zone_Mandiakuy)) }

Listing 1.4. RadioMarché SPARQL query for 2nd scenario

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf—schema#>
PREFIX rm: <http://purl.org/collections/wd4ra/radiomarche/>

INSERT DATA {
rm: product—Beurre_de_karite rdfs:label ”Shea butter”@en
rm: product—Beurre_de_karite rdfs:label ”La manteca de karit ”@Qes
rm: product—Miel_liquide rdfs:label ”Honey” @en
rm: product—Miel_liquide rdfs:label ”Miel” Qes

rm: product—Amande_de_karite rdfs:label ”Shea nuts”@en

rm: product—Amande_de_karite rdfs:label ”Nueces de karit ”Qes
rm: product—Tamarin rdfs:label ”Tamarind” Qen

rm: product—Tamarin rdfs:label ”Tamarindo” Qes

rm: product—Graine_de_nere rdfs:label ”"Nere seeds”@en

rm: product—Graine_de_nere rdfs:label ”Semillas Nere”@es . }

Discussion Table 3 summarizes the results for all scenarios. It shows the
number of SMSes needed to transfer the query as well as the query response.
For the realistic use cases, the amount of SMS per query is limited. We also
list the total costs per query by converting current local SMS rates from two
providers to US Dollars'®. This suggests that, although expensive, the use case
could potentially be made economically viable. The number of SMSes required
to transfer the SPARQL results confirm to the estimations in Table 2.

18 For Mali, we assume an average cost of 20CFA=0.035USD per SMS http://wuw.
orangemali.com/2/particuliers/28/34/les-prepayes-113.html (accessed April
2016). For Ghana, we assume 0.055GH=0.014USD per SMS http://support.
vodafone.com.gh/customer/portal/articles/1823814-sms (accessed April 2016)

13

Table 3. Summary of the four validation scenarios.

Scenario Location Query type Request Request est. Response Response
Size in nr. cost (USD) Size in nr. est. cost
of SMS of SMS (USD)

Digivet Sc.1 Ghana CONSTRUCT 3 0.042 3 0.042

Digivet Sc.2 Ghana INSERT 3 0.042 n.a.

RadioMarché Sc.1 Mali CONSTRUCT 3 0.105 8 0.280

RadioMarché Sc.2 Mali INSERT 3 0.105 n.a.

7 Conclusions

We show that using the Semantic Web for data sharing is possible in areas
without a Web infrastructure. We developed a conversion module that trans-
lates SPARQL over HTTP requests to SMSes and decodes these messages at
the other end. SPARQL over SMS is an example of downscaling the Semantic
Web to the infrastructure in place, in our case SMS. Extending the Kasadaka
platform with this M2M communication functionality adds new possibilities for
Semantic Web applications. Our solution integrates easily with other data shar-
ing solutions since it does not create an isolated SMS-network but presents a
conversion mechanism.

We investigated a number of challenges around porting SPARQL data ex-
change using SMS. Several RDF compression strategies are evaluated based on
real-world small data sets, leading us to a dynamic compression method that
combines the generic serialization and text compression strategies with strate-
gies using shared vocabulary. We show the viability of sending small RDF data
sets using SPARQL over SMS and elaborate this in four scenarios from two re-
alistic use cases. Future work consist of further development and deployment
of solutions which include SPARQL over SMS in the field and designing longer
term evaluations for these and new ICT4D use cases.

The current SPARQL over SMS has several limitations and opportunities for
improvement. First, the reasoning that is used to eliminate semantic redundan-
cies is based on a limited number of RDFS and OWL patterns and is restricted
in terms of the search depth. Second, the SMS transfer mechanism is not yet
fitted to properly deal with unexpected faults or partial transfers. We are look-
ing at methods from systems such as the aforementioned ERS. Furthermore, not
yet all SPARQL operations are supported. To achieve full compatibility, these
will have to be implemented. Lastly, the implementation used to send and re-
ceive SMSes only supports 8-bit SMSes (140 characters). Using 7-bit SMSes (160
character) can further increase efficiency. The intent is to conduct further tests,
by deploying SPARQL over SMS in the field, to identify the effects of these lim-
itations and to validate the solution in real-world conditions. These field tests
will include research into the economic viability of these solutions as discussed
in [7] and look, for example, at integrating mobile-based payment plans.

Although SPARQL over SMS is developed based on ICT4D cases, it is ap-
plicable to other low-bandwidth cases. For example in the context of disaster-
management or Internet of Things. The technologies of SPARQL over SMS are
platform independent and it can be ported to other cases and platforms.

14

Finally, in this paper, we presented a specific approach for decoupling the
principles and practices of the Semantic Web from the underlying implementa-
tion. This shows that these principles are still valid and valuable without the
availability of Internet and a Web infrastructure. The more non-Web-Based net-
works are supported, the greater the reach of Semantic Web will be, as knowledge
can be send across multiple types of networks in a standardized fashion.

References

1. de Boer, V., De Leenheer, P., Bon, A., Gyan, N.B., van Aart, C., Guéret, C., Tuyp,
W., Boyera, S., Allen, M., Akkermans, H.: Radiomarché: Distributed Voice-and
Web-Interfaced Market Information Systems under Rural Conditions. In: Pro-
ceedings of the 24th international conference on Advanced Information Systems
Engineering (CAiSE). pp. 518-532. Springer (2012)

2. de Boer, V., Gyan, N.B., Bon, A., Tuyp, W., van Aart, C., Akkermans, H.: A
Dialogue with Linked Data: Voice-based Access to Market Data in the Sahel.
Semantic Web (2013)

3. Charlaganov, M., Cudré-Mauroux, P., Dinu, C., Guéret, C., Grund, M., Macicas,
T.: The Entity Registry System: Implementing 5-Star Linked Data Without the
Web. arXiv preprint arXiv:1308.3357 (2013)

4. Ferndndez, J.D., Martinez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF Representation for Publication and Exchange (HDT). Web Semantics:
Science, Services and Agents on the World Wide Web 19, 22-41 (2013)

5. Gray, J., Chong, W., Barclay, T., Szalay, A., Vandenberg, J.: TeraScale SneakerNet:
Using Inexpensive Disks for Backup, Archiving, and Data Exchange. arXiv preprint
cs/0208011 (2002)

6. Guéret, C., Schlobach, S., De Boer, V., Bon, A., Akkermans, H.: Is data sharing
the privilege of a few? Bringing Linked Data to those without the Web. ISW(C2011
Outrageous ideas Track, Best Paper award pp. 1-4 (2011)

7. Gyan, N.B.: The Web, Speech Technologies and Rural Development in West Africa:
An ICT4D Approach. Ph.D. thesis, Vrije Universiteit Amsterdam (2016)

8. Heeks, R.: ICT4D 2.0: The Next Phase of Applying ICT for International Devel-
opment. Computer 41(6), 26-33 (2008)

9. Kébisch, S., Peintner, D., Anicic, D.: The Semantic Web. Latest Advances and New
Domains: 12th European Semantic Web Conference, ESWC 2015, Portoroz, Slove-
nia, May 31 — June 4, 2015. Proceedings, chap. Standardized and Efficient RDF En-
coding for Constrained Embedded Networks, pp. 437-452. Springer International
Publishing, Cham (2015), http://dx.doi.org/10.1007/978-3-319-18818-8_27

10. Medhi, I., Ratan, A., Toyama, K.: Mobile-Banking Adoption and Usage
by Low-Literate, Low-Income Users in the Developing World, pp. 485-494.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009), http://dx.doi.org/10.
1007/978-3-642-02767-3_54

11. Pentland, A., Fletcher, R., Hasson, A.: DakNet: Rethinking Connectivity in Devel-
oping Nations. Computer 37(1), 78-83 (Jan 2004), http://dx.doi.org/10.1109/
MC.2004.1260729

12. Rietveld, L., Beek, W., Schlobach, S.: LOD Lab: Experiments at LOD Scale. In:
The Semantic Web-ISWC 2015, pp. 339-355. Springer (2015)

13. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de
Walle, R.: Web-Scale Querying through Linked Data Fragments. In: LDOW (2014)

15

