
Low-bandwidth Semantic Web

Onno Valkering ?

Vrije Universiteit Amsterdam, the Netherlands
o.a.b.valkering@student.vu.nl

Abstract. Many ICT applications and services, including those from
the Semantic Web, rely on the Web for the exchange of data. This in-
cludes expensive server and network infrastructure. Most rural areas of
developing countries are not reached by the Web and its possibilities,
while at the same time the ability to share knowledge has been identified
as a key enabler for development. To make widespread knowledge sharing
possible in these rural areas, the notion of the Web has to be downscaled
based on the specific low-resource infrastructure in place. In this paper,
we introduce SPARQL over SMS, a solution for exchanging RDF data
in which HTTP is substituted by SMS to enable Web-like exchange of
data over cellular networks. We motivate this through two use cases un-
der development in West-Africa, which are also used for the validation of
the approach. We present the design and implementation of the solution,
along with a data compression method that combines generic compres-
sion strategies and strategies that use Semantic Web specific features to
reduce the size of RDF before it is transferred over the low-bandwidth
cellular network.

1 Introduction

The Semantic Web by design builds on, and relies on, the Web infrastructure
for data exchange. This includes sophisticated server and network infrastructure
which are unavailable in many rural areas of developing countries. These areas
are not reached by the web and its possibilities while at the same time the ability
to share knowledge has been identified as a key enabler for development. To make
knowledge sharing possible in rural developing areas, the notion of the Web has
to be downscaled based on the specific low-resource infrastructure in place [6].

Data sharing solutions, such as those based on Semantic Web and Linked
Data technology, should not only be accessible to those with abundant resources
and reliable infrastructures, but also in low-resource environments. Its language-
agnostic nature and flexible graph models make Semantic Web technologies es-
pecially useful for data sharing in these locations. In [3] we show that locally
produced market data, stored as RDF, is produced through, and used in, a

? This master thesis is supervised by Victor de Boer and Stefan Schlobach and is an
extended version of [13]. Gossa Lô and Romy Blankendaal contributed to the case
motivation in section 2.1



voice-interface accessible for low-literate users in their preferred language. Un-
fortunately, the initial success-story ended here, as low-tech options for semantic
data exchange did not exist. More recently, we developed the Kasadaka1, a low-
resource prototyping and computing platform which uses semantic technologies
specialized at developing multi-modal user interfaces. While this widens the ap-
plicability and possible use-cases, a core problem remains; the lack of infrastruc-
ture for Semantic Web sharing of information in most parts of the world.

The main challenge lies in the unavailability of network connections. Espe-
cially in many rural areas of developing countries, internet connections are either
missing or extremely unreliable. For example, Internet penetration is estimated
to be 28.6% of the population in Africa as a whole, with some countries reaching
considerably less of their population: 19.6% in Ghana and 7.0% in Mali where
two of our use cases presented here are situated2. These numbers include both
urban and rural areas and in the latter, internet penetration is virtually non-
existent.

By design, the Semantic Web is built on top of the Internet (TCP/IP) and
World Wide Web infrastructure (including HTTP) and as such when no Inter-
net is available, the conventional Semantic Web is unusable. However, we can
design solutions to implement Semantic Web-like data sharing using alternative
networking capabilities available in low-resource environments.

In this paper, we present a specific downscaling solution for exchanging
(RDF) data in which HTTP is substituted by SMS3 to enable Web-like ex-
change of data over cellular networks. We show the viability of this solution in
two different ways:

1. Technological: we identify three main technological problems when using an
SMS protocol as semantic data transfer protocol, message size, the asyn-
chronous nature of the protocol and how to deal with pagination issues. Our
solution is validated w.r.t. each of those problems with a variety of methods,
which includes a large-scale empirical comparison of compression size.

2. Societal: Using two use-cases from Sub-Saharan Africa (one from Ghana,
one from Mali) we will show how SMS-based Semantic Web can practically
address the knowledge sharing needs of rural communities.

While in this paper, we present a practical solution to low-bandwidth knowl-
edge sharing, our investigation will also be more generally useful to understand
how Semantic Web principles and practices can be separated from the infras-
tructure layers that often are assumed to be prerequisites.

This paper is structured as follows: in Section 2 we present two motivating use
cases that call for the use of Semantic technologies in low-resource environments
based on the Kasadaka. In Section 3 we present our technical solution to use
SMS messages to replace HTTP for transferring Semantic Web data using the

1 http://www.kasadaka.com
2 Internet Penetration Africa November 2015http://www.internetworldstats.com/

Internet World Statistics, Miniwatts Marketing Group.
3 https://en.wikipedia.org/wiki/Short_Message_Service

2



GSM network. In Section 4 we identify some major challenges and evaluate how
our solution addresses these challenges, in particular focusing on various data
compression methods to understand an enable the use of this low-bandwidth
channel. In Section 5 we finally validate our technical solution w.r.t. our use-
cases. We conclude the paper with relating our work with other work and a
discussion.

2 Information Sharing in the Absence of the Web

As early as 2011 we pointed to some negative effects of the Semantic Web’s
reliance on Web infrastructure [6], which effectively made this technology inac-
cessible for a majority of the world population. Through a number of research
projects in Sub-Saharan Africa we have since then identified numerous use-cases
that rely on knowledge sharing. For many of those cases we created hardware
platforms, mostly built on existing infrastructure and processes, which addressed
the respective information needs without use of semantic technology.

The recent Kasadaka project aims at providing information to people liv-
ing in rural communities at a larger scale (in terms of use-cases). Kasadaka is
a generic platform, which enables voice- and SMS-based communication over
GSM. It can be deployed in these communities and be owned and maintained by
local stakeholders. The platform can host different information sharing services,
all accessible through simple interfaces. As users are often low-literate and/or
speak local languages, Kasadaka allows for icon-based visual interfaces and voice
interfaces accessible through simple mobile phones. It also allows to connect to
users through their own devices using an often available and reliable network.

We regularly ran into conceptual and technical problems for which the Se-
mantic Web community has already provided robust methods. While the usage
of a triple store for data hosting has shown some benefits, most real use-cases
require data and knowledge sharing across communities and devices. In the fol-
lowing we describe two use-cases for which we have been developing information
sharing solutions. Both have been co-developed with local stakeholders in rural
West-Africa, both are impossible to fully realize with current technology.

2.1 The DigiVet Case

Inaccessibility of knowledge influences the socio-economic development in rural
areas in Ghana. Poor infrastructure and lack of education are two factors that
increase communication gaps between experts and rural laymen. One of the
information needs that the farmers have is on animal health and in particular
on diagnosing animals. DigiVet is a voice-based veterinary information service
that aims to support subsistence farmers in making the decision whether or not
to visit a veterinarian, while bringing them into contact with each other. Animal
diseases spread within and between villages, and can often be cured merely with
the intervention of a veterinarian. The problem that arises in these rural areas
is that local expertise is often lacking and poor infrastructures (poor roads and

3



lack of electricity) prevent access to information and sharing of knowledge. Some
farmers indicated that they would like to have information on animal diseases,
disease patterns, diagnosis and symptoms, to enable them to take preventive
action and preclude cattle loss. This goes to show that equipping them with
locally available veterinary information could decrease animal mortality rates.

The current version of DigiVet includes a simple interface in which farmers
can click through a set of symptom related questions on a touch screen connected
to the Kasadaka. It is based around a knowledge base4 developed by interviewing
veterinarians working in rural Northern Ghana. Based on these interviews, the
objective of the system is to provide a diagnosis whether or not a farmer should
see a veterinarian. This is done in order to prevent farmers from curing the
animals themselves and in order to stimulate them to more proactively visit a
veterinarian. DigiVet is a diagnostic system that heavily relies on an underlying
knowledge-based system, and on semantic information transfer between village
farmers and veterinarians at large physical distances. While the Kasadaka is a
suitable platform for the diagnostic system, there is currently no technology in
these communities to cater for the necessary semantic data exchange.

2.2 The RadioMarché Case

This use case was initially described in [2]. It deals with a Market Information
System designed to gather and distribute information about offerings of specific
produce on local markets in the Tominian region of Mali. To allow low-literate
stakeholders to retrieve market information using simple mobile phones in the
absence of internet connections, a voice-accessible service was built. The service,
RadioMarché, can be called by local farmers in their own language to retrieve
this information. Community radio hosts do the same to retrieve and broadcast
local offerings live on the radio. The system was developed and deployed in 2012
and during that time a number of offerings were stored [7]. In [3], we describe how
the data was ported to the RDF data model and a Semantic Web-enabled version
was developed. It describes the added benefit of linking market data to external
data sources and using those links for visualization and improved data analyses.
We also describe how this linked market data can be connected to voice-labels
in multiple languages and therefore directly used by a voice-application.

The use case envisions most market information to be locally produced and
retrieved and the system to be designed optimally for that local context. How-
ever, for some products, bulk buyers are interested in retrieving products from
more than one region. Also, other actors such as Non-Governmental Organi-
zations (NGOs) are interested in deriving statistics on quantities and types of
products offered and sold. In those cases, market information needs to be trans-
ferred between two or more local instances of RadioMarché.

4 https://github.com/biktorrr/digivetkb

4



3 A Platform for Semantic Web in an SMS

Our goal is to make the use of Semantic Web applications possible in areas
lacking an infrastructure to support Web-like exchange of data. The intent is
not to create an isolated network that mimics Semantic Web practices, but
rather to develop a mechanism that is capable of transferring Semantic Web
messages, i.e. retrieving and manipulating RDF data, across different kind of
networks infrastructures. We want to achieve this without imposing additional
network-specific operations.

3.1 SPARQL over SMS

The rural areas in West-Africa targeted by our cases only have cellular networks
available for digital communication. Applications deployed in these areas can
make use of SMS for machine-to-machine (M2M) transfer of data, instead of
HTTP as part of a Web-based network. Noteworthy practical differences between
SMS-based networks and Web-based networks are:

– SMS-based network agents are identified by phone numbers instead of URLs;
– The size of an SMS message is limited up to 160 bytes5;
– SMS implements a one-way messaging pattern, whereas HTTP implements

a request-response messaging pattern.

To transfer messages between Web-based networks and SMS-based networks, a
conversion mechanism is required. This mechanism, in addition to the above-
mentioned differences, must take into account these case-specific requirements:

– the number of messages sent should be as low as possible, in view of costs;
– it should be possible to run on low-resource, affordable hardware, such as a

Raspberry Pi computer6.

Although the costs per transferred byte are relatively high for SMS messages,
still some benefits apply. For instance, the infrastructure is already in place
and has a global reach which even includes some rural areas of development
countries. Furthermore, the required hardware to be able to send SMS messages
are affordable and widespread available.

The initial implementation of the described mechanism, which we call SPARQL
over SMS, has been developed around SPARQL. By supporting the CONSTRUCT
and INSERT/DELETE DATA query forms a basic usage of Semantic Web for
machine-to-machine communication can be realized. We select this subset of
SPARQL operations since these involve simple data transfer either from the
client to a server or vice-versa in which the transferred data takes the form of
RDF triples. SPARQL SELECT query responses take the form of result tables
of arbitrary sizes and as such are harder to optimize generically.

5 Based on the encoding used: 8-bit supports 140 characters, 7-bit up to 160 characters.
6 https://www.raspberrypi.org

5



An overview of SPARQL over SMS is illustrated in Figure 1. The converter
is a key component of SPARQL over SMS. A converter instance is responsible
for the conversion between a standard HTTP SPARQL request and an SMS-
optimized equivalent. Different options for sending and receiving SMS messages
are supported by the converter, such as a GSM dongle or an online SMS service.
This allows the converter to be deployed in various scenarios. For example, a
converter deployed in a data-center could be used to share data with a triple
store running on low-resource hardware, e.g. Kasadaka, deployed in the field.

Fig. 1. SPARQL over SMS Overview

A converter instance can be used in two modes: shared and dedicated. A
dedicated converter maps a phone number directly to a particular agent. This
makes it possible for the agent to both send and receive SPARQL queries. Shared
converters, on the other hand, can serve multiple agents. Therefore, a phone
number cannot be mapped directly to a single agent. In this case, the agents can
only perform outgoing SPARQL queries but cannot be the target of incoming
queries. Sending SPARQL queries typically requires an endpoint URL identify-
ing the target receiver. To allow the targeting of an agent in an SMS-network,
the converter can provide a URL representation of an arbitrary phone num-
ber. For example, the format of a SPARQL endpoint URL is: http://{converter
hostname}/agent/{phone number}/sparql. SPARQL requests send to such an
endpoint are captured by the converter and send to the phone number in the
URL. On the other end, a converter receives the query and runs it on the triple
store of the associated agent. The result is then send back to the initial converter
which returns the result as the response to the SPARQL request in the format
specified by the request.

3.2 SMS message structure and conversion

The SMS messages sent between converters follow a specific structure. Five char-
acters of each SMS are reserved for metadata for which the basic 7-bit character
set, as specific by the GSM 03.38 character set7, is used. This includes the mes-
sage type, message identifier, and position for multi-part messages. Excluding

7 http://www.3gpp.org/DynaReport/23038.htm

6



the non-print characters there are 125 different characters left that can be used.
A single character can thus express a numerical value of 1 to and including 125.

HTTP to SMS The converter will create compact SMS transfer optimized
representations of HTTP SPARQL queries and results. In the case of a SPARQL
query the chosen encoding routine is based on the SPARQL query form to be able
to perform fine-grained optimizations. The compact representation is optionally
split into multiple SMSes if it exceeds the character limitation of a single SMS.
The position of each part will be indicated by the multi-part position character
in the metadata. After the conversion, the compact representation is send over
SMS to the phone number extracted from the endpoint URL used to send the
SPARQL query to the converter.

SMS to HTTP When a converter receives a SMSes, HTTP representations
are reconstructed. As different encoding routines might be used, the appropriate
routine is based on the message type defined in the metadata. Decoding can-
not guarantee a result exactly identical to the original message. The resulting
message might thus not be syntactically equivalent, but it will be semantically
equivalent. Multi-part messages are concatenated based on the multi-part po-
sition in the metadata. Although the actual order of incoming SMS messages
cannot be enforced, the convention of sending the last positions first provides an
indication of the number of SMSes the receiving converter can expect.

4 Research Challenges

In the generic design of our solution, converters are used to translate outgoing
SPARQL queries/results to SMS messages and incoming SMS messages back to
semantically equivalent SPARQL queries/results. However, to develop a work-
able solution, a number of challenges need to be addressed. In this section we
outline the different challenges, namely: how to reduce the size of RDF data to
allow for efficient transfer over SMS, issues around asynchronicity of communi-
cation and how to deal with unpredictable query result sizes.

4.1 Small RDF Data Compression

The RDF serialization format has a great effect on the size of an RDF file, and
thereby on the amount of SMS messages needed to transfer the data. The costs
associated with SMS messages restricts us to cases with small amounts of triples
which, in the use cases described, is indeed the case (typically between 1 and
1000 triples). Still, to save costs associated with the sending SMS messages, we
want to use the combination of RDF serialization and compression that is most
efficient, in terms of transfer size, for such small RDF data sets.

7



Experiment Setup To identify the best serialization compression combination,
we have set up a benchmark experiment based on RDF data sets provided by
LOD Lab [12]. The RDF files provided by LOD Lab are crawled from multiple
sources in the Linked Open Data Cloud8, making it a realistic representation of
real-world RDF data sets. Our benchmark test set consists of all 232,822 RDF
files whose size is between 1 and 1000 triples. This large-scale experiment ensures
that we test across many types of data sets, with all kinds of characteristics which
might influence serialization and compression.

These files, originally in N-Triples format, were converted to various serializa-
tion formats (RDF/XML, Turtle, HDT and EXI). The RDF/XML and Turtle
format are plain text serialization formats specifically designed for RDF data
and are widely used. The binary format “Header, Dictionary, Triples” (HDT) is
a data structure developed to compactly store and exchange RDF data, without
sacrificing the ability to search through the data [4]. It claims to be useful in a
wide range of cases, including sharing RDF over the web and resource efficiency
on embedded devices. Efficient XML Interchange (EXI)9 is a binary format de-
signed to create compact representations of XML and has been proposed for
efficient RDF exchange in constrained embedded networks [9]. For each format,
including the original N-Triples format, the file size is recorded before and after
applying gzip-compression. The default implementations of RDFLib10, HDT11

and EXIficient12 have been used. Computing resource usage is not recorded since
we focus only on the amount of SMS messages required based on the file size.

Table 1. Results of the LOD Lab compression experiment (N-Triples = 100%).

No. Triples N-
Triples
+Gzip

RDF/
XML

RDF/
XML
+Gzip

Turtle Turtle
+Gzip

HDT HDT
+Gzip

EXI EXI
+Gzip

1-10 50.7 103.8 77.0 102.0 70.3 495.5 180.1 57.5 65.9
11-20 22.5 62.0 27.1 50.5 24.2 122.2 47.0 23.3 24.9
21-30 16.2 58.2 18.5 48.7 16.3 79.5 31.1 16.5 17.5
31-40 28.3 69.1 30.9 62.1 28.6 86.5 40.7 28.2 29.1
41-50 9.8 51.2 10.2 42.3 8.6 38.1 14.8 9.3 9.7
51-60 17.2 59.2 17.5 50.1 15.9 50.5 22.8 15.8 16.3
61-70 11.8 58.5 12.4 42.4 10.0 43.0 17.7 11.1 11.6
71-80 8.8 54.8 8.5 40.9 7.0 31.6 11.2 7.5 7.8
81-90 6.7 52.0 6.3 40.6 5.1 25.4 9.1 5.8 6.0
91-100 8.1 54.9 7.6 40.4 6.2 26.9 9.7 6.8 7.0
101-200 8.8 62.0 8.3 39.2 6.7 24.7 10.1 7.6 7.9
201-300 4.8 50.8 3.6 39.0 2.8 13.4 4.0 3.6 3.6
301-400 4.8 51.5 3.3 37.7 2.5 11.4 3.3 3.0 3.1
401-500 4.4 51.5 2.9 37.4 2.2 10.4 2.7 2.6 2.7
501-600 5.0 53.8 3.4 38.7 2.5 8.9 3.0 2.9 3.0
601-700 4.1 51.0 2.5 35.9 1.7 8.5 2.2 2.3 2.4
701-800 4.5 51.1 2.7 36.2 1.9 8.1 2.1 2.4 2.4
801-900 4.4 51.1 2.6 36.4 1.8 7.9 1.9 2.3 2.3
901-1000 4.1 50.9 2.4 36.5 1.7 7.7 1.7 2.1 2.1

8 http://lod-cloud.net
9 https://www.w3.org/TR/2014/REC-exi-20140211/

10 https://github.com/RDFLib/rdflib
11 https://github.com/rdfhdt/hdt-java
12 https://github.com/EXIficient/exificient

8



Results In Table 1, we list per format the average resulting file size in respect
to the original N-Triples format. The best compression per bin are marked bold.
The binary gzip, HDT and EXI formats include Base64 encoding overhead for
sending over SMS. For the effect on the smallest of data sets, we first look at
the results from the RDF files in the range from 1 up to 100 triples (81,492 in
total). Grouped by number of triples in bins of 10. As expected, the size reduc-
tion compared to N-Triples becomes greater as the number of triples increases,
because more syntactic redundancy can be taken rid of. HDT start out being
bigger than the original file, this can be explained by the Header-component
(metadata) that the HDT format introduces. With RDF files up to 30 triples,
the gzip-compressed N-Triples format outperforms the other formats. Above
50 triples, the compressed Turtle format starts to outperform the compressed
N-Triples format. For data sets between 30-60 triples, the uncompressed EXI
format performs similar to compressed N-Triples and compressed Turtle. Apply-
ing gzip-compression to EXI hardly has any effect and even increases the file size
in most cases.

When we consider the RDF files between 100-1000 triples we can see that
gzip-compressed Turtle format results in the best compression of the data. In
addition, it is more clearly visible that RDF/XML stagnates around 51% and
Turtle around 36% of size compared to N-Triples. For the RDF files with 600+
triples a gzip-compressed HDT file drops below the size of EXI, at the cost of
losing the ability to perform queries on the file due to the additional compression.

We conclude that for the smallest data sets (≤40 triples), gzip-compressed N-
Triples is preferable. For data sets between 40-1000 triples, the gzip-compressed
Turtle serialization scores best. The reason N-Triples performs better than Turtle
for the smallest data sets can be due to the added overhead of prefixes in the
Turtle format13. In our implementation, we have chosen to dynamically select
the appropriate serialization format, that is N-Triples or Turtle, based on the
number of triples in the SPARQL result. For the two times that EXI performs
best the difference is not large enough to switch from N-Triples or Turtle to EXI.

4.2 Shared Vocabulary RDF Data Compression

In section 4.1 we have focused on serialization and gzip-compression. These
generic strategies consider only the syntactical representation of RDF. In order
to reduce the size of RDF data even more, we tested two compression strategies
focused on RDF-content specific aspects. We do this on the basis of RDF vo-
cabularies that define reusable definitions for common properties and/or types.
In order to use these strategies in SPARQL over SMS the sender and receiver
must share the same set of vocabularies.

Experiment Setup To determine if RDF vocabularies can indeed be used
to reduce the size of RDF data we conducted an experiment with 30 popular

13 The used Turtle serializer adds the RDF, RDFS, XSD and XML prefixes by default.

9



vocabularies14. A subset of 3.577 RDF data sets from the previous LOD Lab
experiment are subjected to dictionary-encoding and reasoning based on the
RDF vocabularies. The experiment consists of three rounds with an increasing
number of vocabularies (popularity top 10, top 20 and top 30). This way, the
effect of using more, but less popular, vocabularies can be measured.

A single HDT file, containing a combination of vocabularies, is generated
during each round of the experiment. The dictionary-encoding mechanism uti-
lizes the Dictionary-component of this HDT file. During the encoding all the
URIs in a RDF data set that also occur in one of the vocabularies are replaced
with a placeholder containing the identifier generated by HDT for the specific
URI.

The intended use of reasoning is to find semantic redundancies in RDF
data sets, based on the knowledge contained in the vocabularies. The imple-
mented reasoner searches for redundancies based on twelve RDFS entailment
patterns15 (all, except the first), as well as two OWL properties16, namely
owl:SymmetricProperty and owl:inverseOf. If the reasoner finds a redundant
triple, it will be removed from the data set. The reasoner only considers explic-
itly defined triples from the RDF data set and vocabularies. Therefore, it is not
guaranteed that the final result is always the smallest set of triples possible.

Table 2. Results of the shared vocabulary compression experiment (N-Triples = 100%).

No. Triples Reasoning
(10 vocab.)

Reasoning
(20 vocab.)

Reasoning
(30 vocab.)

D-Encoding
(10 vocab.)

D-Encoding
(20 vocab.)

D-Encoding
(30 vocab.)

1-100 99.7 94.0 94.0 91.6 88.9 88.6
101-200 97.3 89.3 89.3 92.0 91.1 91.1
201-300 98.0 90.0 90.0 92.7 91.7 91.7
301-400 97.6 89.6 89.6 93.1 92.1 92.1
401-500 98.2 89.2 89.2 93.7 92.7 92.5
501-600 98.2 91.3 91.3 93.8 93.2 93.2
601-700 97.0 88.9 88.9 92.5 91.3 91.2
701-800 99.0 86.6 86.6 95.0 94.2 94.2
801-900 98.8 88.5 88.5 94.5 93.6 93.5
901-1000 99.9 87.9 87.9 94.9 94.0 94.0

Results The two compression strategies are measured independently during the
three rounds of the experiment. Precondition for these compression strategies is
that the subjected RDF data set must use one of the considered vocabularies.
This makes that these compression strategies not always have effect, in terms of
size reduction. The results listed in table 2 are the average resulting file sizes,
grouped by number of triples in bins of 100. These results are based only on the
RDF files where the compression strategies could be successfully applied (31%
for reasoning and 96% for dictionary-encoding). The best results for each bin
are, separately for reasoning and dictionary-encoding, marked bold.

14 Based on the list available on http://prefix.cc/popular/all.
15 https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
16 https://www.w3.org/TR/owl-ref/#Property

10



Reasoning based on the top 10 vocabularies has minimal effect, but using
an additional 10 vocabularies increases the average size reduction across all file
sizes. Using the top 30 vocabularies has no advantage over the top 20 vocabular-
ies when using reasoning. The dictionary-encoding achieves better results based
on the top 10 vocabularies than the reasoning. This is slightly improved when
using the top 20 vocabularies. An additional, but minimal improvement can be
obtained when using all the 30 vocabularies for dictionary-encoding. Based on
these results we conclude that it is best to use the top 20 popular vocabularies
when using the reasoning and dictionary-encoding compression strategies. The
minimal improvement of using the top 30 for dictionary-encoding is not commen-
surate to the increase of processing duration and maintenance efforts introduced
by the additional 10 vocabularies.

Table 3. Best results of the LOD Lab experiment before and after adding shared
vocabulary compression (N-Triples = 100%).

No. Triples Only serialization
and compression

Added shared vocabu-
lary compression

1-10 50.7 44.2
11-20 22.5 18.9
21-30 16.2 13.6
31-40 28.2 23.5
41-50 8.6 8.0
51-60 15.8 8.7
61-70 10.0 6.0
71-80 7.0 6.4
81-90 5.1 4.4
91-100 6.2 5.7
101-200 6.7 5.7
201-300 2.8 2.7
301-400 2.5 2.5
401-500 2.2 2.2
501-600 2.5 2.4
601-700 1.7 1.7
701-800 1.9 1.9
801-900 1.8 1.8
901-1000 1.7 1.7

We combined the top 20 vocabulary based reasoning and dictionary-encoding
with the serialization and gzip-compression approach from section 4.1 to form
the RDF compression method to be used in SPARQL over SMS. To evaluate this
method, all the LOD Lab RDF files between 1 and 1000 triples, as described
in section 4.1, are also subjected to this combined RDF compression method.
The results are listed in table 3, along with the best results achieved from using
only serialization and gzip-compression. It shows that using the reasoning and
dictionary-encoding strategies, that are specific for use with RDF, are especially
useful when compressing the smallest RDF data sets with 1 to 200 triples, in
comparison with applying only the generic serialization and gzip-compression. As
the data set size increases, the purely syntactical compression strategies become
more efficient and gradually makes the vocabulary based compression strategies
less beneficial. This is also visible in table 4, the added vocabulary based com-

11



pression provides a head-start in terms of the average number of triples that can
be send per SMS. This head-start holds until more than 10 SMSes are send

Table 4. Average number of triples that can be send based on the number of SMSes.

Nr. of SMSes Only serialization
and compression

Added shared vocabu-
lary compression

1 0 0
2 3 3
3 6 8
4 9 16
5 21 24
6 66 84
7 84 98
8 116 126
9 175 189
10 301 301

4.3 SPARQL Compression

The compression strategies discussed in section 4.1 and 4.2 are intended for RDF
data sets. However, RDF is not the only kind of data that is transferred when
using SPARQL over SMS. Queries in the form of SPARQL are also transferred.
To ensure cost-efficient transfer, these SPARQL queries must also be send as
small as possible.

Experiment Setup We have tested two strategies to reduce the size of SPARQL
queries, namely gzip-compression and applying the final RDF compression method
discussed in 4.2. To be able to use the RDF compression method for this pur-
pose, we incorporated SPIN serialization [10] to generate RDF representations
of SPARQL queries. The two strategies have been performed on 500 real-world
SPARQL queries extracted from the YASGUI-client logs17. The RDF vocabular-
ies of SPIN are added to the default set of vocabularies for better performance.
As the two compression strategies have a binary format as results, Base64 en-
coding is applied on the result before measuring the file size.

Results The average file size compared to the original file size is 92,5% after
applying gzip-compression and 91,9% after using the combination of SPIN and
RDF compression. Even if the RDF compression on average performs better than
gzip-compression, it does not in the majority of the cases. Only 44% of the time
the RDF compression scored best, in the other cases either gzip-compression
scored best (18%) or plain SPARQL is smaller before applying any compression
(38%). The latter can be explained by the overhead of Base64 encoding, required
to be able to send the binary format over SMS. Based these results, we conclude
that it is best to dynamically determine if the SPARQL query can be compressed
and, if so, which strategy achieves the best compression rate.

17 http://doc.yasgui.org/

12



4.4 Blending Synchronous and Asynchronous Messaging

SPARQL exchanges follow a request-response messaging pattern. When a query
is sent as a request over the network, the receiver processes the request and
composes a response with the query result. A single connection is used and
kept open during the transfer, making it a synchronous operation. Sending SMS
messages follows a one-way messaging pattern. Each message is a standalone
message that not enforces a follow-up response. Therefore, the connection is
terminated after a message has been delivered, this makes the sending of SMS
an asynchronous operation.

With SPARQL over SMS we want to seamlessly transfer messages from Web-
based networks to SMS-based networks and vice-versa. For this purpose, we need
to harmonize the two different messaging patterns. The initial implementation
of SPARQL over SMS keeps connections open on the Web-based network side
during the data transfer over the SMS-based network. After sending a SPARQL
query over SMS, the converter waits until the corresponding query result re-
sponse comes in. The query result response is of a different message type, but
it can be correlated to the original request by using the message identifier for
correlation.

This implementation is workable, but might not be an optimal solution con-
sidering deployment in the rural areas described in our use-cases. For example,
due to unreliable or temporary loss of connectivity the response message might
be available after hours or even days. It is questionable if the low-resource hard-
ware can hold open multiple connections for that period. Even if it is capable
of doing so, there is a genuine risk of a sudden power outage that will result in
a loss of connections, requiring the data transfer to start-over. In our specific
use-cases this would result in additional, unnecessary, costs. Additional efforts
are required to create an asynchronous-supporting version of SPARQL for situ-
ations when a response is not expected within a seconds- or minutes-long time
span.

4.5 Unpredictable Query Result Sizes

A simple looking SPARQL query might yield an unexpectedly large result. To be
thrifty with sending SMS messages, we want to restrict the amount of SMS mes-
sages that will be send. We have considered two options to achieve this, SPARQL
pagination and pagination on a SMS-level. SPARQL provides the LIMIT, OFF-
SET and ORDER BY keywords that can be used to implement pagination, but
the SPARQL query result will not include pagination information, e.g. the total
number of results available. This means it is not possible to tell whether or not
all results already have been retrieved. Another issue that raises is the possibility
for a triple to have a very long literal object that can span multiple SMSes. Rely-
ing only on SPARQL pagination for regulating the result size is not sufficient to
regulate the number of SMSes send. Pagination on the SMS-level as alternative
to the SPARQL paging would only introduce the option to decide whether or not
to continue receiving the SMS messages. Since a partial result from a complete

13



SPARQL result cannot be created: it is the whole SPARQL result or nothing.
This would also alter the way SPARQL over SMS must be used compared to
the SPARQL standard, due to the addition of pagination operations which can
not be ignored. With our implementation the SPARQL result is directly, after
compression, send through SMS. If the result does not fit in a single SMS it will
split up the message, on arbitrary points, into multiple SMSes. If reaches a hard
set restriction and stops sending SMSes the receiver cannot read the message
properly due to missing parts: partial results are not supported. Therefore, we
consider above-limit SPARQL results as an error. An HTTP 400 bad request
instead of the SPARQL result is returned to the user.

5 Practical Validation

5.1 Implementation and Integration with Kasadaka

The source code and documentation of SPARQL over SMS is openly available18.
It is developed using the Python and Java programming languages, with easy
integration with other services in mind. As a result, SPARQL over SMS is capable
of running on various operating systems and devices.

For validation, we import SPARQL over SMS as a module into the Kasadaka.
As described in Section 2, Kasadaka is a collection of simple, and affordable hard-
ware: most importantly, a Raspberry Pi and a GSM dongle. It optionally has a
small touch-screen to allow for icon-based interaction. All hardware components
are cheap and widely available. The software on Kasadaka19 is as much as pos-
sible free and open-source software to allow for community-development and to
make it as affordable as possible. The Kasadaka project builds on information
acquired from workshops in Burkina Faso, Mali, Ghana and Niger, focusing on
the development of ICT services that support re-greening activities in rural, of-
ten remote areas in the Sahel. Its software includes the ClioPatria semantic web
platform20, which functions as an RDF data store for various applications on
Kasadaka. It also comes with connections to a voice browser and a library to
develop applications in Python. SPARQL over SMS extends Kasadaka to allow
sharing of its RDF data across devices.

5.2 Evaluation in Four Scenarios

For the two use case in Section 2, we are developing services using the Kasadaka.
In both cases, communication between two remotely deployed Kasadaka plat-
forms is key. This means that the capabilities for communication over GSM allow
us to test our design for SPARQL over SMS with the Kasadaka platform. Our
validation setup consists of two Kasadakas with each of the triple stores loaded
with both the DigiVet and RadioMarché data sets. A Web-accessible triple store

18 https://github.com/onnovalkering/sparql-over-sms
19 https://github.com/abaart/KasaDaka
20 http://cliopatria.swi-prolog.org/

14



with this data is available at http://semanticweb.cs.vu.nl/radiomarche/.
We developed two scenarios per use case which corresponds to four SPARQL
queries for which we test our service and determine the amount of SMSes re-
quired both with our RDF compression method and without (in this case the
plain RDF/XML output as provided by the ClioPatria triple store). To improve
the shared vocabulary compression strategies, the case-specific vocabularies are
added to the default SPARQL over SMS set of vocabularies.

Extending the DigiVet application Combining the DigiVet application with
the SPARQL over SMS solution adds new data sharing options. With the use of
two scenarios, from the perspective of the veterinarian, we demonstrate how the
DigiVet application can be extended using the new features. For the first sce-
nario we consider a veterinarian interested in retrieving the type and frequencies
of animal disease symptoms occurring near Walewale, Ghana from a remote in-
stance of DigiVet running on a Kasadaka. The SPARQL query in Listing 1.1 can
be used to answer this question. Sending this query requires 3 SMS messages
(in this case, there is no difference in number of triples with or without com-
pression). The result response yields 7 triples, which sending with our solution
takes 3 messages (for comparison, in the raw RDF/XML format, it would take
14 SMS messages).

Listing 1.1. Digivet SPARQL query for 1st scenario

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX dv : <https :// w3id . org /w4ra/ d i g i v e t/>

CONSTRUCT {
?sym dv : occurance count ? count

}
WHERE {

SELECT ?sym (COUNT(?sym) as ? count ) WHERE {
? person f o a f : based near <http :// sws . geonames . org /2294174/> .
? person dv : ha s ca s e ? case .
? case dv : has symptom ?sym

}
GROUP BY ?sym }

As a second scenario for the DigiVet case we consider the need of a vet-
erinarian to update the animal diseases knowledge base present on a DigiVet
installation. As an example, the SPARQL query in Listing 1.2 can be used to
add a new disease, named “Black Leg”, with associated symptoms to the Di-
giVet triple store. Transferring this query requires 3 SMS messages (compared
to 5 SMS messages without compression).

Listing 1.2. DigiVet SPARQL query for 2nd scenario

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX dv : <https :// w3id . org /w4ra/ d i g i v e t/>

INSERT DATA {
dv : b l a c k l e g a dv : Disease .
dv : b l a c k l e g r d f s : l a b e l ” B lack l eg ”@en .
dv :Cow dv : canCarryDisease dv : b l a c k l e g .
dv : Sheep dv : canCarryDisease dv : b l a c k l e g .

15



dv : unwil l ingnessToMove dv : symptom for d i sease dv : b l a c k l e g .
dv : rap idBreath ing dv : symptom for d i sease dv : b l a c k l e g .
dv : lameness dv : symptom for d i sease dv : b l a c k l e g .
dv : appet i t eLos s dv : symptom for d i sease dv : b l a c k l e g .
dv : f e v e r dv : symptom for d i sease dv : b l a c k l e g .
dv : swe l l ingThigh dv : symptom for d i sease dv : b l a c k l e g .}

Extending the RadioMarche application For the RadioMarché service, we
consider two scenarios that extend its data sharing functionalities. The first sce-
nario involves the retrieval of the current offerings, including the phone number
of the advertisers, in the Mafoune and Mandiakuy regions of Mali. Using a CON-
STRUCT query (Listing 1.3), this information is retrieved as a RDF graph from
a RadioMarché installation. Sending the query through our solution requires 3
SMS messages (one SMS less than sending the query without any special mea-
sures). The query result consisted of 152 triples in total and could be transferred
using 8 SMS messages. For the latter result, when sending the result directly
from the triple store, without applying RDF Compression, a total of 121 SMS
messages would have been required which shows the economic impact of the
compression step.

Listing 1.3. RadioMarché SPARQL query for 1st scenario

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX rm : <http :// pur l . org / c o l l e c t i o n s /w4ra/ radiomarche/>

CONSTRUCT {
? contact rm : c o n t a c t t e l ? t e l .
? contact rm : h a s o f f e r i n g ? o f f e r i n g .
? o f f e r i n g r d f s : l a b e l ?prod name

} WHERE {
? o f f e r i n g a rm : Of f e r i ng .
? o f f e r i n g rm : has contac t ? contact .
? o f f e r i n g rm : prod name ? prod .
? prod r d f s : l a b e l ?prod name .
? contact rm : c o n t a c t t e l ? t e l .
? contact rm : zone ? zone .
FILTER (? zone IN (rm : zone Mafoune , rm : zone Mandiakuy ) ) }

As a second RadioMarché scenario, we perform an INSERT DATA query
(Listing 1.4) to add product labels in additional languages. The query will create
ten new triples. Using our solution it can be send using only 3 SMS messages,
half of the uncompressed number.

Listing 1.4. RadioMarché SPARQL query for 2nd scenario

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX rm : <http :// pur l . org / c o l l e c t i o n s /w4ra/ radiomarche/>

INSERT DATA {
rm : product−Be ur r e de ka r i t e r d f s : l a b e l ”Shea butte r ”@en .
rm : product−Be ur r e de ka r i t e r d f s : l a b e l ”La manteca de k a r i t ”@es .
rm : product−M i e l l i q u i d e r d f s : l a b e l ”Honey”@en .
rm : product−M i e l l i q u i d e r d f s : l a b e l ” Miel ”@es .
rm : product−Amande de karite r d f s : l a b e l ”Shea nuts ”@en .
rm : product−Amande de karite r d f s : l a b e l ”Nueces de k a r i t ”@es .
rm : product−Tamarin r d f s : l a b e l ”Tamarind”@en .
rm : product−Tamarin r d f s : l a b e l ”Tamarindo”@es .
rm : product−Gra ine de nere r d f s : l a b e l ”Nere seeds ”@en .
rm : product−Gra ine de nere r d f s : l a b e l ” Semi l l a s Nere”@es . }

16



Discussion Table 5 summarizes the results for all four scenarios. It shows the
number of SMSes needed to transfer the query as well as the query response. This
shows that for the realistic use cases, the amount of SMSes per query is limited.
We also list the total costs per query by converting current SMS rates from
two providers in the location of the use case to US Dollars21. This shows that,
although expensive, the specific use case could potentially be made economically
viable. The number of SMS messages required to transfer the SPARQL results
confirm to the estimations in Table 4.

Table 5. Summary of the four validation scenarios.

Scenario Location Query type Request
Size in nr.
of SMS

Request est.
cost (USD)

Response
Size in nr.
of SMS

Response
est. cost
(USD)

Digivet Sc.1 Ghana CONSTRUCT 3 0.042 3 0.042
Digivet Sc.2 Ghana INSERT 3 0.042 n.a.
RadioMarché Sc.1 Mali CONSTRUCT 3 0.105 8 0.280
RadioMarché Sc.2 Mali INSERT 3 0.105 n.a.

6 Related Work

SMS as a data channel has been proposed in other ICT for Development (ICT4D)
cases, for example in [8]. A number of Social Network Services such as Twitter,
Facebook as well as the Google search engine allow for accessing those services
through SMS22. Mostly, this deals with machine-to-human interaction and not,
as in our case for machine-to-machine interaction.

Related work in semantic data exchange in low-resource network environ-
ments includes the Entity Registry System (ERS) [1], an open-source entity
registry specifically designed for environments with ad-hoc and/or unreliable
network connectivity. It allows for Linked Data without using the centralised
components that make up the Web infrastructure. ERS has mechanisms to deal
with interval-based network connectivity (e.g. a mobile truck that functions as
an access point) and is resistant against packet loss. DakNet provides similar
solutions where ad-hoc wireless networks are combined with asynchronous net-
working, also including mobile access points [11]. Whereas these solutions also
implement Web-like datasharing without Web infrastructure, they focus mainly
on local networks and rely on the availability of partial internet connectivity.

Another way of transferring data without Internet is through so-called Sneak-
ernets, where data is exchanged by physically moving removable media or hard

21 For Mali, we assume an average cost of 20CFA=0.035USD per SMS
http://www.orangemali.com/2/particuliers/28/34/les-prepayes-113.html.
For Ghana, we assume 0.055GH=0.014USD per SMS http://support.vodafone.

com.gh/customer/portal/articles/1823814-sms-
22 http://www.digitaltrends.com/mobile/sms-your-way-back-to-the-web/,

accessed Apr 2016

17



disks. For large-scale non-immediate data transfer, this is a viable solution [5]
which can be combined with solutions such as the one presented in this paper23

In this paper, we focus on Semantic data exchange using the SPARQL proto-
col. There are other opportunities for accessing RDF data over a network. Two
examples are simple URI dereferencing and the use of Linked Data Fragments
[14]. Compared to these methods, accessing RDF using SPARQL typically takes
more computing resources on the client and server devices itself, but bandwidth
can be limited. For our specific cases, saving bandwidth is a key issue, which is
why we use SPARQL. It is interesting to further investigate the trade-off between
computational and networking resources in these specific ICT4D cases.

7 Conclusions

With SPARQL over SMS we have shown that data sharing according to Seman-
tic Web practices is possible even in areas without a Web infrastructure. We
developed a conversion module that translates SPARQL over HTTP requests to
SMS messages and decodes these messages at the other end. This is an exam-
ple of downscaling the Semantic Web to the infrastructure in place, in our case
SMS. Enabling the Kasadaka platform to not only perform machine-to-human
communication but also machine-to-machine communications adds new possibil-
ities for applications our solution integrates easily with conventional Web-based
knowledge sharing since it does not create an isolated SMS-network but rather
presents a conversion mechanism.

We investigated a number of challenges around porting SPARQL data ex-
change using SMS. Several RDF compression strategies are evaluated based on
real-world small data sets, leading us to a dynamic compression method that
combines the generic serialization and text compression strategies with the Se-
mantic Web specific shared vocabulary compression strategies. We have shown
the viability of sending small RDF data sets using SPARQL over SMS and
elaborate this in four scenarios from two realistic use cases currently under
development. Future work consist of further development and deployment of
Kasadaka-based solutions which include SPARQL over SMS in the field and
designing longer term evaluations for these and new ICT4D use cases.

The current SPARQL over SMS has several limitations and opportunities for
improvement. First, the reasoning that is used to eliminate semantic redundan-
cies is based on a limited number of RDFS and OWL patterns and is restricted in
terms of the search depth. Second, the SMS transfer mechanism is not yet fitted
to properly deal with unexpected faults or partial transfers. We here are looking
at methods from systems such as the aforementioned ERS. Furthermore, not yet
all SPARQL operations are supported. To achieve full compatibility, these will
have to be implemented. Lastly, the Kasadaka implementation used to send and
receive SMSes only supports 8-bit SMSes (140 characters). If 7-bit SMSes (160

23 As a side-note, the humorously suggested “IP over Avian carriers” protocol describes
Internet access using pigeons carrying USB sticks or flash cards. https://tools.
ietf.org/html/rfc1149

18



character) could be used, additional data can be transferred per SMS. The in-
tent is to conduct further tests, by deploying SPARQL over SMS in the field, to
identify the effects of these limitations and to validate the solution in real-world
conditions. These field tests will also include closer research into the economic
viability of these solutions as discussed in [7] and look at for example, integrating
mobile-based payment plans.

Although SPARQL over SMS is developed based on ICT4D cases, it is also
applicable to other low-bandwidth cases. For example in the context of disaster-
management or the Internet of Things. Since the technologies used are platform
independent, SPARQL over SMS can be ported to other platforms that require
SPARQL over short-message transfer networks.

Finally, in this paper, we present a specific case for decoupling the principles
and practices of the Semantic Web from the underlying technical implementa-
tion. This shows that these principles are still valid and valuable without the
availability of Internet and the Web infrastructure. The more non-Web type of
networks are supported, the greater the reach of Semantic Web will be, as knowl-
edge can be send across multiple types of networks in a standardized fashion.

References

1. Marat Charlaganov, Philippe Cudré-Mauroux, Cristian Dinu, Christophe Guéret,
Martin Grund, and Teodor Macicas. The entity registry system: Implementing
5-star linked data without the web. arXiv preprint arXiv:1308.3357, 2013.

2. Victor de Boer, Pieter De Leenheer, Anna Bon, Nana Baah Gyan, Chris van
Aart, Christophe Guéret, Wendelien Tuyp, Stephane Boyera, Mary Allen, and
Hans Akkermans. Radiomarché: Distributed voice-and web-interfaced market in-
formation systems under rural conditions. In Proceedings of the 24th international
conference on Advanced Information Systems Engineering (CAiSE), pages 518–
532. Springer, 2012.

3. Victor de Boer, Nana Baah Gyan, Anna Bon, Wendelien Tuyp, Chris van Aart,
and Hans Akkermans. A dialogue with linked data: Voice-based access to market
data in the sahel. Semantic Web, 2013.

4. Javier D Fernández, Miguel A Mart́ınez-Prieto, Claudio Gutiérrez, Axel Polleres,
and Mario Arias. Binary rdf representation for publication and exchange (hdt).
Web Semantics: Science, Services and Agents on the World Wide Web, 19:22–41,
2013.

5. Jim Gray, Wyman Chong, Tom Barclay, Alex Szalay, and Jan Vandenberg. Teras-
cale sneakernet: Using inexpensive disks for backup, archiving, and data exchange.
arXiv preprint cs/0208011, 2002.

6. Christophe Guéret, Stefan Schlobach, Victor De Boer, Anna Bon, and Hans Akker-
mans. Is data sharing the privilege of a few? bringing linked data to those without
the web. ISWC2011 Outrageous ideas Track, Best Paper award, pages 1–4, 2011.

7. Nana Baah Gyan. The Web, Speech Technologies and Rural Development in West
Africa An ICT4D Approach. PhD thesis, Vrije Universiteit Amsterdam, 3 2016.

8. Richard Heeks. Ict4d 2.0: The next phase of applying ict for international devel-
opment. Computer, 41(6):26–33, 2008.

9. Sebastian Käbisch, Daniel Peintner, and Darko Anicic. The Semantic Web. Latest
Advances and New Domains: 12th European Semantic Web Conference, ESWC

19



2015, Portoroz, Slovenia, May 31 – June 4, 2015. Proceedings, chapter Standard-
ized and Efficient RDF Encoding for Constrained Embedded Networks, pages 437–
452. Springer International Publishing, Cham, 2015.

10. Holger Knublauch, James A Hendler, and Kingsley Idehen. Spin-overview and
motivation. W3C Member Submission, 22, 2011.

11. Alex (Sandy) Pentland, Richard Fletcher, and Amir Hasson. Daknet: Rethinking
connectivity in developing nations. Computer, 37(1):78–83, January 2004.

12. Laurens Rietveld, Wouter Beek, and Stefan Schlobach. Lod lab: Experiments at
lod scale. In The Semantic Web-ISWC 2015, pages 339–355. Springer, 2015.

13. Onno Valkering, Victor de Boer, Stefan Schlobach, Gossa Lô, and Romy Blank-
endaal. The semantic web in an sms. 2016.

14. Ruben Verborgh, Miel Vander Sande, Pieter Colpaert, Sam Coppens, Erik Man-
nens, and Rik Van de Walle. Web-scale querying through linked data fragments.
In LDOW, 2014.

20


