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Abstract

In recent years, there has been a growing interest from the digital humanities in knowledge graphs as
data modelling paradigm. Already, this has led to the creation of many such knowledge graphs, many of
which are now available as part of the Linked Open Data cloud. This presents new opportunities for data
mining. In this work, we develop, implement, and evaluate (both data-driven and user-driven) an end-to-
end pipeline for user-centric pattern mining on knowledge graphs in the humanities. This pipeline combines
constrained generalized association rule mining with natural language output and facet rule browsing to allow
for transparency and interpretability—two key domain requirements. Experiments in the archaeological
domain show that domain experts were positively surprised by the range of patterns that were discovered
and were overall optimistic about the future potential of this approach.
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1. Introduction

Digital humanities communities have shown a
growing interest in the knowledge graph as a data
modelling paradigm [1]. Already, this interest has
inspired several large-scale international projects—
amongst which are Europeana1, CARARE2, and
ARIADNE3—to actively explore the creation and
publication of knowledge graphs in their respective
domains. These knowledge graphs, and many oth-
ers like them, have been made available as part of
the Linked Open Data (LOD) cloud—a vast and in-
ternationally distributed network of heterogeneous
knowledge—bringing large amounts of structured
data within arm’s reach of humanities researchers,
who are now looking for ways to analyse this wealth
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of knowledge. This presents new opportunities for
data mining [2].

Data mining is the process of identifying valid,
novel, potentially useful, and ultimately under-
standable patterns in data [3]. These patterns de-
scribe regularities in a dataset which can help re-
searchers gain more insight into their data. Re-
searchers can then use this insight as a starting
point to form new research hypotheses, as sup-
port for existing ones, or simply to get a better
understanding of their data [4]. This entire pro-
cess can take weeks or even months of hard work
in the traditional setting. However, by incorporat-
ing data mining into the workflow, much of this
time can be saved through the automatic discovery
of potentially-relevant patterns. This makes data
mining interesting as a support tool for humanities
researchers.

Of course, the idea of using data mining as a sup-
port tool in the humanities is, in itself, not novel.
There have been various attempts before, for in-
stance to classify coins [5] or to cluster cultural her-
itage [6]. However, the majority of these studies in-
volved mining unstructured data, most commonly
in the form of text mining, whereas mining struc-
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tured data has thus far been largely limited to tab-
ular data and tailored to specific use cases. With
the growing popularity of knowledge graphs in the
humanities, mining patterns from these structures
becomes ever more important to researchers in this
domain.

This work present the MINing On Semantics
pipeline (MINOS) for pattern mining on knowledge
graphs in the humanities. Its aim is to support do-
main experts in their analyses of such knowledge
graphs by helping them discover useful and inter-
esting patterns in their data. To this end, the MI-
NOS pipeline places users in the centre by letting
them guide the mining process towards their topics
of interest and by letting them focus the results via
a facet pattern browser.

Under the hood, MINOS employs generalized as-
sociation rule mining (ARM). An association rule
is an implication of the form X =⇒ y, where the
presence of a set of items X implies the presence of
another item y. These implications are learned by
iterating over a dataset of examples, called trans-
actions. Generalized ARM works largely the same,
except that the antecedent X holds the item classes
rather then the items themselves.

This method was specifically chosen to help over-
come two key issues with technological acceptance
in the humanities, namely transparency and inter-
pretability [7, 8]. With transparency, we refer to
the ease with which a method and its underlying
theory can be understood: a black box method, for
example, is less transparent than a glass box one.
With interpretability, we mean how easily one can
interpret the results of a method: it is, for instance,
typically more difficult to interpret an n-order ten-
sor than it is to interpret a set of symbolic state-
ments.

Generalized ARM satisfies both of these con-
straints: it employs basic statistical know-how to
produce human-readable rules in an overall deter-
ministic process. A limited background in statis-
tics, which most humanities researchers possess,
therefore already suffices to understand how these
rules map back to the input data and to check
whether they are valid. This allows humanities re-
searchers to put their trust in both the method and
its results [9].

Of course, this trust is only gained if the pro-
duced rules provide useful and interesting patterns
which can help these researchers to get a better un-
derstanding of their data. We call this the effective-
ness of the approach. To assess this effectiveness

we conducted experiments in the archaeological do-
main, specifically on data from various excavations,
during which domain experts were asked to evalu-
ate a set of candidate rules on interestingness.

By placing domain experts at the centre of both
the pipeline and its evaluation, as opposed to data
scientists, we contribute to an as yet largely unex-
plored niche in this intersecting field of data min-
ing, knowledge graphs, and humanities. Concretely,
our main contributions are 1) insight into some
of the challenges and possible solutions for intro-
ducing data science tools to the humanities, 2) a
pipeline design for pattern mining on knowledge
graphs which is tailored to domain experts rather
than to data scientists, and 3) a user-driven evalu-
ation of our design choices instead of only a data-
driven one.

With these contributions, our research aims to
add to the interdisciplinary field of the Digital Hu-
manities. For this reason, we will refrain from de-
veloping an ARM algorithm from scratch, but in-
stead focus on how we can augment such an algo-
rithm with complementary components to make it
into an effective tool for Humanities researchers.

A concise overview of related work is given next,
followed by an overview of the pipeline, the dataset,
and the experimental setup. This paper then dis-
cusses the results from the user-driven evaluation,
and concludes with a reflection on the chosen ap-
proach in light of these results.

2. Related Work

Studies on data mining in the humanities have
thus far largely focussed on unstructured data (text
mining), whereas data mining on semi-structured
or structured data has been explored less fre-
quently [4, 10]. An example of the latter kind is
discussed in [11], in which the authors propose min-
ing association rules from excavation data—sites as
transactions, artefacts as items—using the proven
Apriori algorithm. This task is similar to that de-
scribed in this work, but it is executed on a rela-
tional database rather than a graph-shaped knowl-
edge base.

Rule mining on (graph-shaped) knowledge bases
can take many different forms. Initial efforts pri-
marily focused on Inductive Logic Programming
(ILP), due to its natural fit to logic-based sys-
tems [12]. Performance issues led to the develop-
ment of derivatives. Most well-known is arguably
AMIE [13], whose main difference is its use of the
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Partial Completeness Assumption to cope with the
lack of negative examples. In either case however,
the rule-generation process is more complex than
that of traditional ARM, making it less transpar-
ent for non-experts and thus a less suitable choice
for the humanities domain.

A handful of studies have focussed on applying
ARM algorithms to knowledge graphs. The most
straightforward approach simply converts all triples
to transactions (as used in traditional ARM) and
then feeds these to the Apriori algorithm [14]. This
has the downside however, of 1) forcing relational
data into an unnatural shape and potentially losing
information in the process, and 2) limiting the pos-
sible exploitation of both relations (via the graph’s
structure) and semantics [15]. Fortunately, these
caveats can largely be avoided by using an ARM
algorithm that is specifically tailored to knowledge
graphs.

Several of these tailored ARM algorithms exist,
for instance SWApriori; an adaptation of the com-
mon Apriori algorithm to knowledge graphs [16].
Its main selling points are its ability to discover pat-
terns which span over multiple triples, i.e., a path,
rather than over just a single one, and that it can
mine multi-relational patterns. However, all seman-
tic information is disregarded early on for efficiency
reasons, hence reducing the dataset to a directed
graph.

An alternative that does address this informa-
tion is SWARM [17], which exploits RDF and RDFS

semantics to generalize patterns. Hereto, SWARM
uses the rdf:type relation to infer the classes of ev-
ery resource (item) in a set X, and then computes
an inheritance tree for all resources in X using the
rdfs:subClassOf relation. Resources in the same
branch are grouped under their top-most common
class, and are therefore said to share the same pat-
terns.

SWARM’s ability to exploit common semantics
for generalization is unique amongst ARM algo-
rithms for knowledge graphs4. For this very reason,
we have chosen SWARM for our implementation of
the MINOS pipeline (see Section 3).

Other alternatives are discussed in [19] (aligning
locations), [20] (constructing ontologies), and [21]
(mapping categories), but these are designed to fit
a specific task and are therefore less applicable to
this work.

4Note that ARM algorithms that exploit general seman-
tics as background knowledge do exist, for example [18].

Common amongst all these algorithm however,
is that they treat resources as items—the things we
are trying to find implications between. Another
commonality is the focus on the graph’s structure—
its vertices and edges—whereas the values of its lit-
erals are left unaddressed. Therefore, similar values
are still treated as completely different items.

Moving from the level of ARM to that of the
pipeline, we can draw parallels between the ap-
proach presented by Nebot&Berlanga [22, 23] and
the MINOS pipeline introduced in this work. Sim-
ilar to MINOS, the scope of the mining process
is tailored to the users’ interests provided via a
user-defined pattern. However, where our pipeline
encodes patterns as triples with optional unbound
variables, Nebot&Berlanga ask users to construct a
formal SPARQL query using an extended grammar.
While this offers more flexibility than our approach,
it also increases the difficulty of entering such pat-
terns for anyone not familiar with SPARQL.

Parallels can also be drawn with the approach
presented in [24, 25]. Here, the authors perform
dimension reduction by eliminating duplicate item
sets prior to mining, and by removing unwanted
candidate rules afterwards. This latter step is,
again, similar to the data-driven filter used in the
MINOS pipeline, whereas the former step is implic-
itly dealt with by the uniqueness property of URIs.
A final similarity between both pipelines is the use
of generalized association rules.

A last but nevertheless important distinction
concerns the evaluation of candidate rules: none
of the cited work so far has gone beyond a data-
driven (objective) evaluation, despite its well known
limitations for assessing the interestingness of pat-
terns [26, 27]. Instead, this interestingness can only
be assessed properly by combining a data-driven
evaluation with a user-driven one. In addition to
the common data-driven evaluation, we have there-
fore asked the local archaeological community to
assess a set of candidate rules via an online survey
(see Section 5.2).

3. The MINOS pipeline

The MINOS pattern mining pipeline combines
an off-the-shelf ARM algorithm with a simple facet
rule browser, and a number of crucial pre- and
post-processing components. These components
enable users to integrate their interests into the
process by restricting the search space beforehand,
and by filtering the results afterwards. Hereto, the
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pre-processing components translate user-provided
target patterns into SPARQL queries, use these
queries to retrieve relevant resources from the LOD
cloud, and perform context sampling to enrich them
with additional information. The post-processing
components constrain the mined rules based on the
user-specified patterns, and present them to the
user for evaluation using the facet rule browser. A
flowchart of this structure is provided in Figure 1.
The processes depicted in this flowchart will be dis-
cussed next.

3.1. Data Retrieval

To start the mining process, users are asked
to provide a target pattern which describes their
current interest. This pattern takes the form of
one or more triples and serves as a language bias
which restricts the search space to the relevant sub-
graph [28]. Each triple in this pattern can convey a
semantic range by leaving variables uninstantiated:
( , p, o) to specify all entities for which (p, o)
holds, ( , p, ) to specify all entities for which p

holds, ( , , ) to denote the entire graph, etc.
The next step is the automatic transla-

tion from the provided target pattern to a
SPARQL CONSTRUCT query, This query is then
used to construct an in-memory copy of the
corresponding subgraph. For instance, the
pattern [( , rdf:type, :Burial Ground) ∧ ( ,

crm:contains, :Human Remains)] results in a
graph which holds only instances of burial grounds
at which human remains were found. We call these
instances the target entities. Note that not all
triples in a pattern have to be hard constraints:
users can specify soft constraints as well. If, for
instance, the second triple in the example pattern
would be a soft constraint, then also ContextFind
entities for which this (p, o)-pair is unknown are
included in the resulting graph. Entities with con-
flicting relations however, are still excluded.

3.2. Context Sampling

To find only relevant patterns we must first ac-
curately capture the target entities’ semantic rep-
resentations. These representations, which we call
their contexts, include all information which might
be relevant to them during the mining process.
Hence, contexts serve a role similar to that of the
“individuals” in tradition Data Mining. Capturing
these contexts is done using context sampling, and
involves supplementing all target entities with ad-
ditional triples, retrieved from the original graph,

which are directly or indirectly related to that en-
tity.

In our implementation of the MINOS pipeline we
chose a local-neighbourhood-based sampling strat-
egy. This strategy was selected for its simplicity—it
only requires a single parameter—and for its ability
to produce good approximations without the need
for background knowledge. This strategy assumes
that the semantic representation of a target entity
diffuses with distance: closely-related entities are
more relevant than those further away in the graph.
To reflect this, a local-neighbourhood strategy sam-
ples the neighbouring nodes of a target pattern up
to a certain depth.

3.3. Rule Mining

At the heart of the pipeline lies the ARM algo-
rithm. For the reasons explained before—the ex-
ploitation of RDF and RDFS semantics to general-
ize patterns—we have chosen SWARM for our im-
plementation of the pipeline. To understand how
SWARM operates, we will now first expand on our
earlier brief introduction to ARM.

An association rule is an implication of the form
X =⇒ y, where X is a finite set of items and
y is a single item not present in X [29]. With
generalized ARM, X is reduced to the set of item
classes C1, C2, . . . , Cn where Ci ∈ X if it covers
at least θ% of the items. An example of such a
rule might be {Cemetery,BurialGround} =⇒
HumanRemains, implying that human remains
are often found at both cemeteries and burial
grounds.

SWARM extends the notion of item sets from
sets of items with the same type to semantic item
sets, which contain items (entities) that frequently
share (p, o)-pairs. Instances of cemeteries and
burial grounds, for instance, are likely to share
the (:contains, :Human Remains)-pair. Once all
semantic item sets in the graph have been com-
puted, SWARM proceeds by joining similar item
sets into common behaviour sets. In our exam-
ple case, a likely combination might occur with in-
stances of crypts and catacombs. The rationale un-
derlying this is the assumption that entities with
largely overlapping contexts (sets of properties and
instances within a set distance) are likely to also
share other, as yet-unknown, (p, o)-pairs. Put dif-
ferently: these entities follow the same pattern.
To quantify this, SWARM introduces the similar-
ity factor, which serves as a boundary that sepa-
rates similar from dissimilar item sets. As a final
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Figure 1: A flowchart of the MINOS pipeline. At start, a SPARQL query, automatically generated from a user-provided target
pattern, is executed to retrieve a relevant subset from the LOD-cloud. After capturing the contexts of the target entities in
this subset, these contexts are passed to the ARM algorithm. The resulting rules are then first filtered based on a predefined
constraint template, with the remainder being presented to domain experts for evaluation.

step, SWARM generalizes the discovered patterns
by exploiting class inheritance, ultimately produc-
ing rules of the form ∀χ(Class(χ, c)→ (P (χ, φ)→
Q(χ, ψ))). Here, χ, φ, and ψ are entities, c a class,
and P and Q predicates.

There are several measures available to assess the
interestingness of the resulting rules. For our data-
driven evaluation we use the well known confidence
and support measures. The confidence score of a
rule X =⇒ y conveys its strength and equals the
proportion of triples (transactions) which satisfy X
that also satisfy y. Its support score represents
the rule’s significance and equals the proportion of
triples which satisfy both X and y.

3.4. Dimension Reduction

Association rule mining algorithms commonly
produce a large number of candidate rules, resulting
in their own knowledge management problem [30].
To combat this, our pipeline includes a data-driven
filter which discards unwanted rules based on a pre-
defined set of constraints. These constraints can in-
clude minimum and maximum values for the sup-
port and confidence scores, but also restrictions on
types, on predicates, and on both entire antecedents
and consequents.

By default, the set of constraints filters all
rules which are too common or too rare, or
which are generally unwanted. Typical exam-
ples of such unwanted rules are those which in-
clude domain-independent relations—owl:sameAs,
skos:inSchema, dcterms:medium, etc—which do
not contribute to the pattern mining process. Op-
tionally, the default filter can be overridden by pro-
viding a custom constraints template at start. This

allows us to further reduce the number of candidate
rules by tightening the constraints.

Note that the filter is run after the rules have
been produced. This is a deliberate design choice
that allows users to revert any or all of its effects
without having to repeat the whole mining process,
and therefore offers more flexibility during the anal-
ysis of the results. Hereto, the unfiltered result set
is kept in memory.

3.5. Rule Browser

Candidate rules which pass the filter are pre-
sented to users in an interactive facet browser. To
improve their interpretability, these rules are au-
tomatically translated to natural language by ex-
ploiting the label-attributes of both entities and
properties. The resulting translations are then in-
serted into predefined sentence templates; one per
language.

To change which rules are shown, users can
supply additional information about their interest.
This involves modifying the same parameters as
those available for the constraints templates dis-
cussed previously, and thus includes both restric-
tions on assigned scores and on contents. Rules
which are deemed worthy of saving can be exported
to a human-readable file, or can be stored in a bi-
nary file which can later be reopened by the rule
browser for further analysis and mutation.

For our implementation of the pipeline we opted
for a virtual-terminal interface, which offered us the
necessary balance between simplicity and flexibility
needed during our interactive sessions with domain
experts. If desired however, a full-fledged web inter-
face can be used instead by running the rule browser
via a client-side environment.
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4. The package-slip Knowledge Graph

Excavation data is a valuable source of informa-
tion in many archaeological studies [9]. These stud-
ies are therefore likely to benefit from pattern min-
ing on this type of data, and thus make it a suitable
choice to base our case study on. In agreement with
domain experts, we therefore selected the package-
slip knowledge graph to run our experiments with.

Package slips are detailed summarizations of en-
tire excavation projects. They are structured as
specified by the SIKB Protocol 0102, which is a
Dutch standard on modelling and sharing excava-
tion data of various degree of granularity5. Specif-
ically, package slips capture the following aspects:

• General information about individuals, compa-
nies and organisations which are involved, as
well as the various locations at which the ex-
cavations took place.

• Final and intermediate reports made during
the project, as well as different forms of media
such as photos, drawings, and videos. Each of
these is accompanied by meta-data and (cross)
references to their respective file, subject, and
mentioning.

• Detailed information about all artefacts dis-
covered during the project, as well as their
(geospatial and stratigraphic) relation and the
archaeological context in which they were
found.

• Fine-grained information about the precise lo-
cations and their geometries at which artefacts
were discovered, archaeological contexts were
observed, and where media was created.

In its specification, the SIKB protocol makes use
of the Extensible Markup Language (XML) to de-
fine the various concepts that make up a package
slip. The limitations of this language for sharing
and integrating data motivated the Dutch ARI-
ADNE partners, amongst whom were we, to design
an alternative data model based on semantic web
standards.

The semantic package slip is primarily built
on top of the CIDOC conceptual reference model
(CRM) and its archaeological extension CRM
English Heritage (CRM-EH). Every excavation

5www.sikb.nl/datastandaarden/richtlijnen/sikb0102

project is of the type DHProject (Dutch Heritage
Project, a subclass of CRM-EH’s EHProject) and
links to the discovered artefacts via production
events. To classify these artefacts, and all related
archaeological contexts, the package-slip graph in-
cludes a multi-schema SKOS vocabulary which con-
tains more than 7.000 archaeological concepts.

A small and partial example of a package slip
is depicted in Figure 2. There, a single artefact
(crmeh:ContextFind) is shown with its archaeo-
logical context (crmeh:Context). The artefact also
holds several attributes of various types, and is it-
self part of a unit (crm:Collection). These units
are virtual containers that group artefacts which
were found in the same archaeological context. In
contrast, bulk finds (crmeh:BulkFind) are physi-
cal containers, often a box, which group artefacts
with similar storage requirements (e.g. on humid-
ity, temperature, or oxygen). These are linked to a
Dutch Heritage project via a production event.

4.1. Knowledge Integration

At present6, the package-slip knowledge
graph7contains the aggregated data from lit-
tle over 70 package slips, totaling roughly 425.000
triples [31]. These package slips were converted
from existing XML files8, and were subsequently
integrated into a single coherent graph by using
a central triple store which acted as an authority
server: hash values were generated for all entities
in a package slip—starting from the outer edge of
the graph and recursively updating all encountered
parents—which were then cross referenced with
those on the server. By using this approach,
we were able to unify different resources about
the same thing, most particular about people,
companies, and locations.

The size of the package-slip knowledge graph is
expected to grow consistently, as the production of
package slips has recently been made mandatory
for all Dutch institutes and companies which are
involved with archaeological data. This increases
the relevancy of this case study for the Dutch ar-
chaeological community, and thus adds support for
our choice of the package slip.

6Situation on July 2018
8The conversion tool is available at gitlab.com/

wxwilcke/pakbonLD
8pakbon-ld.spider.d2s.labs.vu.nl
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Figure 2: Small and partial example from the package slip knowledge graph. Each project produces (amongst others) one
or more containers. These containers are composed of one or more bulk finds, which in turn are composed of one or more
artefacts. Each of these artefacts is part of a unit of which its members share a common (multilayered) context. Note that,
in this figure, solid and opaque circles represent instance and vocabulary resources, respectively. Three dots represent literals,
and opaque boxes represent classes

5. Experiments

To assess the effectiveness of the MINOS pipeline,
we have conducted four experiments on the
package-slip knowledge graph (see Section 4). Each
of these experiments addressed a different granu-
larity of the package-slip graph to investigate the
effects of these different granularities on the useful-
ness of the discovered patterns for domain experts.
In order from coarse-grained to fine-grained, these
are

Projects, which, amongst other, are of a project
class, are held at a specific location, and during
which one or more artefacts are discovered.

Artefacts, which, amongst others, are of an arte-
fact class, have dimensions and mass, consist
of one or more parts, and are found in a cer-
tain archaeological context and under specific
conditions.

Archaeological Contexts, which, amongst oth-
ers, are of a context class, have a geometry, a
structure, and a dating, and which consist of
one or more subcontexts.

Archaeological Subcontexts, which, amongst
others, have a certain shape, colour, and tex-
ture, which consist of zero or more nested sub-
structures, and which hold an interpretation of

its significance as provided by archaeologists in
situ.

The bottom three granularities—artefacts, con-
texts, and subcontexts—roughly correspond to the
interests of three domain experts, with whom we
had several interviews during the experiment de-
sign phase. The most coarse-grained granularity
(projects) was added by us to create a balanced
cross-section of the graph. From here on, we re-
fer to these granularity levels as topics of interest
(ToI).

All experiments were run using our implementa-
tion of the MINOS pipeline9. Hereto, all four of
these experiments were given the same set of hy-
perparameters (Table 1). Concretely, we set local-
neighbourhood context sampling depth (CSD) to
a maximum of three hops, and varied the similar-
ity factor (SF) over three values which range from
weakly similar to strongly similar. Therefore, each
experiment was run three times (CSD×SF) with
different hyperparameters. Because different simi-
larity factors may result in distinctly different, yet
possibly useful, patterns, we aggregated their out-
put to produce a single result set per experiment.

Each experiment produced up to roughly 1800
candidate rules, which was brought down from

9gitlab.com/wxwilcke/MINOS.
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about 36.000 on average using the default filter set-
tings. From these 1800 rules, we created a more
manageable evaluation sample by taking the top
fifty candidates based on their confidence (first) and
support (second) scores. We motivate our choice of
confidence as the primary measure due to the em-
phasis on producing correct, but also yet unknown,
patterns.

Five candidate rules are listed in Table 2. These
have been hand picked from the evaluation sample,
and are representative of the result set as a whole.
We will use these five candidates as running exam-
ples in our data-driven evaluation.

5.1. Data-Driven Evaluation

To assess the general effectiveness of the pipeline,
we have chosen not to incorporate any dataset-
specific adjustments into the data-driven evalua-
tion. The reason for this is that we are not in-
terested in how well our approach works on this
particular dataset, but rather how effective the sup-
port and confidence metrics are as criteria for our
data-driven filter and, by extension, for the per-
ceived interestingness of the discovered patterns to
domain experts. For the purpose of this evaluation,
we limit ourselves to the evaluation sample created
earlier.

An inspection of the evaluation sample reveals
that many of the candidate rules apply to classes
other than the four selected topics of interests.
Two examples of such rules are listed in Table 2:
both rules R3 and R4 apply to entities of the
SiteSubDivision class, which is not explicitly
listed in any of the target patterns. In fact, 16%
of all rules in the evaluation sample apply to this
class. If we look at the package-slip data model
however, we observe that said class lies within three
hops of the DHProject class. Therefore, the pres-
ence of these unexpected classes can likely be at-
tributed to the chosen context sampling strategy.
Indeed, the same is the case for all other unex-
pected classes such as ContextStuff, Collection,
and Place Appellation, which apply to 11.5%,
8%, and 6% of all rules in the evaluation sample.

Another look at the evaluation sample reveals
that many of the candidate rules actually describe
very similar patterns. This is especially evident
with time spans, which are present in nearly half
(43%) of the patterns. In fact, of the five examples
listed in Table 2, all but one involves a time span
as consequent. The reason for their frequent occur-
rence can likely be traced back to the package-slip

vocabulary: many of the artefact classes are in a
many-to-one relationship with specific time spans.
For instance, all known belly amphora stem from
the pre-classical period (612 BCE -– 480 BCE).
These predefined relationships are treated as pat-
terns by the ARM algorithm, and, due to overrep-
resented in the data, score high on confidence and
support. This is also true for other predefined re-
lationships, such as those that involve geographical
information: map areas are paired with their re-
spective toponymies, and provinces are paired with
municipalities.

A final revelation of the evaluation set is that
both support and confidence scores alone provide a
poor measure of pattern interestingness: over 96%
and 99% of the patterns have support and confi-
dence scores close (δ ≤ 0.05) or equal to 0 or 1,
respectively. This makes it difficult to distinguish
between patterns which are actually interesting and
those which describe predefined and therefore un-
interesting relationships. While this difficulty is a
known problem with ARM [30], the extreme form it
takes here is likely caused by the nature of the pack-
age slip data: nearly all information that might be
interesting to domain experts (artefacts, archaeo-
logical contexts, etc.) is in a one-to-one relationship
with each other. Therefore, this information is not
shared within, and also not between, package-slip
instances.

5.2. User-Driven Evaluation

To assess the interestingness of the produced
rules from a domain expert’s point of view we
asked the local archaeological community—a Face-
book group with over 3000 members from various
Dutch academic and commercial organizations—to
participate in an online survey (Fig. 3). At the
start of this survey, participants were greeted with
a concise summary of this research and with a de-
tailed description of the task we asked them to per-
form: to rate a selection of forty candidate rules on
plausibility (can this be true in the context of the
data? ), on relevancy (can this support you during
your research? ), and on newness (is this unknown
to you? ). Once completed, the participants were
also asked some final questions about their famil-
iarity with the domain, and whether this approach
of rule mining could contribute to their studies.

A five-point Likert scale was offered as an-
swer template throughout the entire survey. To
stress the importance of the participants’ opinions
our Likert scale ranged from strongly disagree to
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Table 1: Configurations of the four experiments. Column names indicate topic of interest (ToI), target pattern, number of
facts in the subset, context sampling depth (CSD), and similarity factors (SFs).

ToI Target Pattern # facts CSD SFs

Projects [( , rdf:type, :DHProject)] 21.9k 3 (0.3, 0.6, 0.9)
Artefacts [( , rdf:type, crmeh:ContextFind)] 192.8k 3 (0.3, 0.6, 0.9)
Contexts [( , rdf:type, crmeh:Context)] 82.2k 3 (0.3, 0.6, 0.9)
Subcontexts [( , rdf:type, crmeh:Context)

∧ ( , pbont:trench type, )]
59.5k 3 (0.3, 0.6, 0.9)

Table 2: Five example rules selected from the top-50 candidates of all four experiments. Each rule applies to resources of type
TYPE, and consists of an antecedent and a consequent in the form of an IF-THEN statement. The last two columns list
their confidence and support scores.

ID Semantic Association Rule Conf. Supp.

R1
TYPE crmeh:ContextFind

IF :has artefact type, :Adze
THEN crm:has time-span, [:Neolithic Period, :Bronze Age]

1.00 0.08

R2
TYPE crmeh:ContextFind

IF :has artefact type, :Raw Earthenware (Nijmeegs/Holdeurns)

THEN crm:has time-span, [:Early Roman Age, :Late Roman Age]
1.00 0.90

R3
TYPE crmeh:SiteSubDivision

IF :has location type, :Base Camp

THEN crm:has time-span, [:Neolithic Period, :New Time]
1.00 0.26

R4
TYPE crmeh:SiteSubDivision

IF :has location type, :Flint Carving

THEN crm:has time-span, [:Mesolithic Period, :Neolithic Period]
0.50 0.06

R5
TYPE crmeh:Context

IF :has trench type, :Esdek

THEN :has sample method, :Levelling

1.00 0.71

Table 3: Translation in natural language of the five example rules given in Table 2. The last three columns list their normalized
median and (highest) mode scores for plausibility (P ), relevancy (R), and novelty (N).

ID Semantic Association Rule PMdn (PMode) RMdn (RMode) NMdn (NMode)

R1 For every artefact holds: if it concerns an adze, then it dates from the
Neolithic period to the Bronze Age.

0.75 (0.75) 0.75 (0.75) 0.75 (0.75)

R2 For every artefact holds: if it concerns raw pottery Nijmeegs/Holdeurns,
then it dates from Early Roman to Late Roman period.

0.75 (0.75) 0.50 (0.75) 0.25 (0.25)

R3 For every site holds: if it concerns a base camp, then it dates from the
early Neolithic period to Recent times.

0.25 (0.25) 0.25 (0.25) 0.50 (0.75)

R4 For every site holds: if it concerns flint carving, then it dates from the
Mesolithic to Neolithic period.

0.25 (0.25) 0.25 (0.25) 0.25 (0.25)

R5 For every context holds: if it concerns an esdek, then the collection
method involves levelling.

0.25 (0.25) 0.25 (0.25) 0.75 (0.75)
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strongly agree, where our questions were stated such
that a higher agreement corresponds with a higher
interestingness. Additionally, if desired, partici-
pants could enter further remarks as free-form text.

All forty candidate rules were randomly sampled
from the evaluation sample—ten per experiment
(stratified)—and automatically10translated to nat-
ural language using predefined language templates
(see Section 3.5). We have listed five of these trans-
lated rules in Table 3. Each of these rules is the
translation of the rule with the same identifier in
Table 2.

5.2.1. Survey Analysis

Twenty-one people participated in our survey. A
statistical analysis of their answers is provided in
Table 4. For each of the four experiments, this table
lists the normalized median and mode scores for
plausibility, relevancy, and novelty. Also listed are
the overall scores per experiment and per metric,
and the score for the entire approach as a whole.
For all scores holds that higher is better.

Looking at the four separate experiments it is
clear that project and artefact related patterns are
rated higher than those of contexts and subcon-
texts, with an overall median score of 0.50 versus
that of 0.25, respectively. Patterns about artefacts
also score relatively high on the mode (0.75), ex-
ceeding that of all other experiments (0.25). This
implies a cautious positive opinion towards arte-
facts related patterns. Contributing to this posi-
tiveness are the plausibility and relevancy ratings,
on which artefacts score better than any of the other
three experiments. Statistical tests (Kruskal-Wallis
with α = 0.01) indicate that these findings are sig-
nificant, and suggest a dependency between various
metrics and the topics of interest: p = 7.66× 10−13

for plausibility, p = 6.97× 10−5 for relevancy, and
p = 1.50× 10−3 for novelty.

The approach as a whole scores best on plausi-
bility and novelty, both of which have a median of
0.50. Between these two metrics, plausibility takes
the cake with a mode of 0.75 versus that of 0.25

for novelty. This implies a cautious positive opinion
towards the plausibility of the discovered patterns.
More negative are the relevancy ratings with a me-
dian and mode of 0.25. Together, the metrics com-
bine to an overall score with median 0.50 and mode

10In some cases, minor edits were made to improve the
flow of the sentence.

0.25, implying a neutral to slightly negative opin-
ion about the approach as a whole. Remarks made
by domain experts suggest that this stems from the
frequent occurrence of patterns that are either too
general, too trivial, or which describe predefined
one-to-one or many-to-one relationships. This cor-
responds with our findings during the data-driven
evaluation. Nevertheless, a median and mode score
of 0.75 was given to the final separate question
about the overall potential usefulness of this ap-
proach, implying a more positive standpoint.

Table 5 lists the inter-rater agreements per ex-
periment and per metric. The Krippendorff’s al-
pha (αK) is used for this purpose, as it allows
comparisons over ordinal data with more than two
raters. Overall, the ratings are in fair agreement
with αK = 0.25. A similar agreement is found be-
tween the different topics of interest, which range
from 0.18 to 0.30. A more extreme difference is
found between the different metrics: a moderate
agreement on plausibility (αk = 0.41), and only
a slight agreement on both relevancy (αK = 0.08)
and novelty (αK = 0.09). This stark difference may
be caused by the different familiarities and experi-
ences of the domain experts: whereas plausibility
comes down to everyday archaeological knowledge,
novelty (and in a lesser degree: relevancy) is far
more dependent on one’s own view of the domain.

We can get a better understanding of these scores
by reading the remarks that have been left by the
domain experts. Overall, these remarks suggest a
disconnect between how the evaluation task was in-
structed and how the experts performed it: rather
than assessing the patterns within the (limited)
context of the data set, our panel of experts appear
to have judged the patterns against the knowledge
in the archaeological domain as a whole. Numerous
patterns have therefore only been scored as implau-
sible because they do not necessary hold outside of
the data set. Similarly, remarks on relevance and
novelty seems to indicate that the raters only as-
sessed that exact pattern instance, and did not con-
sider the potential of such patterns on different data
sets. Interestingly, some experts appear to have
used this limited window to try to understand the
knowledge creation process of fellow archaeologists:
whether, for instance, the choice of an unexpected
class could indicate an alternate interpretation of
the same facts.
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Figure 3: Collage of various screenshots of the web survey used during the user-driven evaluation. Participants were first asked
about their background and experience, and were then given a summary of this research and a detailed description of the task.
Next, they were presented with 40 candidate rules and asked to rate these on interestingness. Afterwards, participants were
also asked about their opinion on the pipeline as a whole.

Table 4: Normalized separate and overall median and (highest) mode scores for plausibility (P ), relevancy (R), and novelty
(N) per topic of interest as provided by 21 raters.

ToI PMdn (PMode) RMdn (RMode) NMdn (NMode) Overall

Projects 0.50 (0.25) 0.25 (0.25) 0.50 (0.75) 0.50 (0.25)
Artefacts 0.75 (0.75) 0.50 (0.25) 0.25 (0.25) 0.50 (0.75)
Contexts 0.25 (0.25) 0.25 (0.25) 0.50 (0.75) 0.25 (0.25)
Subcontexts 0.25 (0.25) 0.25 (0.25) 0.50 (0.25) 0.25 (0.25)

Overall 0.50 (0.75) 0.25 (0.25) 0.50 (0.25) 0.50 (0.25)

Table 5: Inter-rater agreements (Krippendorff’s alpha: αK) over all raters per topic of interest (left) and per metric (right).
Overall αK = 0.25.

ToI αK

Projects 0.22
Artefacts 0.30
Contexts 0.24
Subcontexts 0.18

Metric αK

Plausibility 0.41
Relevancy 0.08
Novelty 0.09
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6. Discussion

Our analysis of the survey’s results indicates that
the panel of experts was cautiously positive about
the plausibility of the produced patterns. This
(slight) positiveness does not come as surprise, as
association rules describe the actual patterns which
exist in the data, rather than predict new ones. We
can even further explain this observation by our de-
cision to order the candidate rules on confidence—
favoring accuracy above coverage—and because the
package-slip knowledge graph only contains curated
data. Given that this is the case however, we may
wonder why the patterns in our evaluation sample
were not rated even more positively on plausibility.

A possible reason is the presence of errors in
the data, but these would likely be incidental and
should therefore have only a minor effect on the
mean plausibility score. A more likely reason is that
we used a suboptimal set of hyperparameters dur-
ing our experiments. Prime suspects are the cho-
sen similarity factors, which determine how much
groups of entities (the semantic item sets) are per-
mitted to overlap before they are combined into
more general groups (the common behaviour sets).
Concretely, a too low value can result in overgener-
alization: two or more item sets are erroneously at-
tributed the same pattern. This results in the gen-
eration of rules which do not hold for all members
of a set, despite a possible high confidence score
implying the opposite, and which are thus likely to
score poorly on plausibility in the eyes of domain
experts.

We can solve this problem to a certain extent by
increasing the similarity factor to a value at which
only minor differences in set members are accepted.
By doing so however, we risk trading one undesir-
able situation for another: rather than overgener-
alizing, we might undergeneralize such that similar
item sets are prevented from forming common be-
haviour sets. In the worst case, we might even end
up joining only very large items sets—the similar-
ity factor is covariant with set size—which have a
near perfect overlap, hence favouring sets with (p,
o)-pairs that frequently co-occur across the graph.
Examples of such patterns were present in our eval-
uation set, most particular those that implied rela-
tionships between two vocabulary concepts (types
of artefact and time spans, provinces and munici-
palities, etc.) which naturally belong together.

Unfortunately, the optimal value(s) for the simi-
larity factor are unknown beforehand, which is why

we varied over three different values—0.3, 0.6, and
0.9—during our experiments. As explained before,
our choice for these specific values came forth from
our preliminary findings, which showed that these
different values result in distinctly different, yet po-
tentially useful, patterns. Given the occurrence of
both too general and too specific patterns in our
evaluation set, however, we can now surmise that
the outer two values were likely too low and too
high, respectively. This suggest that there exists
but a narrow range of optimal values in the sim-
ilarity factor spectrum for which SWARM yields
desirable patterns. Determining this optimal range
would require a great deal of time and effort from
our domain experts, unfortunately, which is why no
further preliminary experiments have been run.

While the chosen hyperparameters thus seem to
largely correlate with the plausibility score, our re-
sults suggests that it are the characteristics of the
dataset which are correlated with the relevancy and
the novelty scores. On both of these scores, our
group of experts were less positive about the pre-
sented patterns. The remarks left reveal that many
of these patterns were seen as trivial. Others were
seen as tautologies or were only thought to be appli-
cable in a specific context. These remarks support
our findings made during the data-driven evalua-
tion that the confidence and support metrics are in-
effective measures for assessing the interestingness
of patterns to domain experts. Both measures are
strongly influenced by the size, variety, and quirks
of the data. Peculiarities of the package slip data,
specifically its inherent hierarchical structure, are
likely the reason which made this issue manifest it-
self even more evidently in this work.

Another reason for the unsatisfying novelty and
relevancy scores may be found in the similarity be-
tween patterns: many of the produced rules de-
scribe variations of the same pattern, with only
a different vocabulary concepts in the consequent.
One pattern, for example, might imply that some
pots are made from red clay, whereas another pat-
tern might imply that other pots are made from
grey clay. Our dataset contained over 7.000 of these
concepts separated into 22 categories (e.g., material
and period). If left unchecked, it is therefore likely
for similar patterns to make their way into the re-
sult set.

Additionally, many of the potentially interesting
data points were encoded via textual or numerical
literals. SWARM, as well almost all other methods
in this field, lacks the ability to compare literals
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based on their raw values [15]. Instead, resources
are only compared via their URIs, which are unique
and therefore always spaced at equal distance from
each other in the search space. Because of this lim-
itation, our pipeline was unable to differentiate be-
tween closely (or distantly) related literals. This
became especially apparent with geometries, mea-
surements, and descriptions, all three of which are
abundantly found in archaeological data.

A further reason for the novelty and relevancy
scores may lie in with the ontology that is used in
the package slip data model: many of the properties
defined in this model are expressed via rather long
paths (up to five hops). This characteristic is di-
rectly inherited from the used CIDOC CRM ontology,
which specifies that entities and properties are to
be linked via various events. Travelling along these
long paths is computationally expensive, which is
why we had decided to leave such paths unexplored
in favor for the more local patterns.

Zooming out from the individual scores can give
us an idea about the perceived overall effectiveness
of the pipeline. The remarks left by the experts
suggest that this effectiveness may have been in-
fluenced considerable by the size and scope of the
dataset. Indeed, the relatively low number of inte-
grated package slips might not have been enough to
allow for well-generalized patterns to emerge, rather
than the more-specific patterns which only make
sense in a narrow context (e.g., within a single ex-
cavation). Similarly, the limited scope of the data—
the package slips were supplied by just two compa-
nies, each with a particular specialisation—meant
that experts with different specialisations (e.g., a
different culture or period) might have had insuffi-
cient experience to evaluate the discovered patterns
on the criteria we asked them to.

A final aspect worthy of noting are the relatively
low number of raters we were able to muster, de-
spite our greatest efforts, and the effect this may
have had on the outcome of our evaluation: the in-
fluence of possible outliers is greater, and the find-
ings are less generalizable beyond our chosen use
case. An analysis of the survey’s access logs indi-
cates that many potential raters did not actually
complete the survey, but instead gave up at an ear-
lier point. From the remarks left by those who did
complete the survey, we believe that this was likely
due to a combination of there being too many pat-
terns to evaluate, and the limited novelty and rele-
vance that these patterns provided to them.

7. Conclusion

In this work, we introduced the user-centric MI-
NOS pipeline for pattern mining on knowledge
graphs in the humanities. With this pipeline, we
aim to support domain experts in their analyses
of such knowledge graphs by helping them dis-
cover useful and interesting patterns in their data.
Our pipeline therefore emphasizes the importance
of these experts and their requirements, rather than
those of the usual data scientists. This has led to
several design choices, most particular of which is
the use of generalized association rules to overcome
the lack of transparency and interpretability—two
key issues with technological acceptance in the
humanities—that persists with many other meth-
ods.

To assess the effectiveness of our pipeline we con-
ducted experiments in the archaeological domain.
These experiments were designed together with do-
main experts and were evaluated both objectively
(data driven) and subjectively (user driven). The
results indicate that the domain experts were cau-
tiously positive about the plausibility of the dis-
covered patterns, but less so about their novelty
and their relevance to archaeological research. In-
stead, a large number of patterns were discarded
by our experts for describing trivialities or tautolo-
gies. Nevertheless, on average, the experts were
positively surprised by the range of patterns that
our pipeline was able to discover, and were opti-
mistic about the future potential of this approach
for archaeological research.

During our research we encountered several
challenges which limited the effectiveness of our
pipeline. We were unable to address them at that
time and therefore offer these as suggestions for
future work. For the most part, these challenges
concern the nature of the data and the inability of
the mining algorithms to exploit this. Concretely,
the inability to 1) exploit common semantics other
than RDF and RDFS (e.g., SKOS and, in a lesser de-
gree, CIDOC CRM), and 2) cope with knowledge en-
coded via literal attributes (rather than only via
the graph’s structure) which make up the majority
of knowledge in the humanities.

Solving these challenges would unlock a wealth
of additional knowledge which is currently left un-
used, and which can potentially lead to more useful
and more interesting patterns which humanities re-
searchers can use to further their research.
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