
VRIJE UNIVERSITEIT AMSTERDAM

MASTER THESIS

Automating Authorship Attribution in
Heterogeneous and Sparse Publication

Data through Supervised Machine
Learning

Author:
Nizar HIRZALLA

Supervisor and examiner:
Dr. Victor DE BOER

Daily supervisor:
Sara Veldhoen MSc

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in

Artificial Intelligence
Faculty of Science

November 13, 2020

http://www.vu.nl
http://www.johnsmith.com
http://www.victordeboer.com/
https://lab.kb.nl/person/sara-veldhoen
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Nizar HIRZALLA, declare that this thesis titled, “Automating Authorship Attri-
bution in Heterogeneous and Sparse Publication Data through Supervised Machine
Learning” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master’s
degree at the VU.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Signed:

Date: 22-10-2020

ii

VRIJE UNIVERSITEIT AMSTERDAM

Abstract
Automating Authorship Attribution in Heterogeneous and Sparse Publication

Data through Supervised Machine Learning

by Nizar HIRZALLA

Authorship attribution is the process of correctly attributing a publication to its cor-
responding author, which is is often done manually in real-life settings. This task be-
comes inefficient when there are many options to choose from due to authors having
the same name. Authors can be defined by characteristics found in their associated
publications, which could mean that machine learning can potentially automate this
process. However, authorship attribution tasks introduce a typical class imbalance
problem due to a vast number of possible labels in a supervised machine learning
setting. In addition, we use more problematic data as input data as this mimics the
type of available data for many institutions; data that is heterogeneous and sparse
of nature. Due to this problematic data input, we consider investigating two main
methodologies: similarity learning and author classification. Additionally, we con-
duct various experiments in order to determine how different types of contextual
metadata can be used for increasing performance. Aside from metadata, text of the
publication is available, which in this case study is limited to solely a title for a ma-
jority of the publications. Thus, an experiment is conducted to seek how sparsely
available text of a publication can be represented the most effectively. Conclusively,
we see that the implemented models can accurately predict the right author in a sig-
nificant number of cases and reduce the number of possibilities effectively in other
cases. We ultimately conclude that our machine learning implementation, following
the pipeline as described in this thesis, can significantly reduce the costs and time
consumption of manual authorship attribution in heterogeneous and sparse publi-
cation data. We also conclude that the addition of contextual publication metadata,
using the BERT text representation for sparse text inputs and harmonizing machine
learning implementation with end users’ (experts) current work approach will lead
to the best results.

HTTP://WWW.VU.NL

iii

Acknowledgements
First and foremost I want to thank my supervisors Dr. Victor de Boer and Sara Veld-
hoen for their continuous support and invaluable feedback.

I would like to thank Sara for helping me understand the various aspects of bibli-
ographical metadata structures and the associated authorship attribution task. Sara
also gave consistent in depth support throughout the project as the daily supervisor,
whether it was technical or conceptual. I would also like to thank Sara for always
being reachable and facilitating opportunities to explore my own curiosities.

I like to express my gratitude towards Victor for providing enthusiastic engage-
ment through the process of this project as well as his role in steering me through
the steps of the project as official supervisor. I would also like to thank Victor for
sharing many useful ideas and comments, as his experience in the dynamic field of
machine learning and cultural heritage proved to be vital for the research conducted
in this thesis.

Furthermore, I would also like to thank the KB in general for providing the
means to carry out the research. In particular, I would like to thank Martijn Kleppe
who helped facilitating and setting up the project as well as providing additional
support. My thanks also goes out to the people who helped out with gaining in-
sights in current problems with manually attributing authors to publications and
usage of heterogeneous data for this purpose: Dorien Haagsma, Renske Koster, Gert
Jan Boskamp and Heleen van Lopik-den Heijer. I would also like to thank the peo-
ple who helped out with using external sources for integrating data: Olaf Janssen,
Michel Gruijter and Djoke Dam.

Last but not least, I want to thank my parents, family and friends for providing
support in many other invaluable ways that were paramount for carrying out this
masterproject.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Authorship attribution . 1
1.2 Background . 2

2 Theoretical background and related work 4
2.1 Author Detection: Usage of Machine Learning 4

2.1.1 Drawing insights from author detection in full text inputs . . . 5
2.1.2 Author detection in smaller texts and associated metadata . . . 5
2.1.3 Linear modelling and ensemble learning 8

Linear modelling . 8
Ensemble learning . 8

2.1.4 Deep learning and neural networks 10
2.2 Author Detection: Text Representation 11

2.2.1 TFIDF . 11
2.2.2 Word embeddings: Word2vec and fastText 12
2.2.3 Bidirectional Encoder Representations from Transformers . . . 14

2.3 Heterogeneous data for predictive modelling 16
2.3.1 Disparity of information richness and availability 16

Preprocessing . 17
Feature engineering . 17
Feature selection . 17
Usage of external knowledge . 18

2.3.2 Class imbalance: using Similarity Learning 18

3 Data 20

4 Methods 24
4.1 Interviewing cataloguers and metadata specialists 24

4.1.1 Interviews . 24
4.1.2 Observing difficult cases . 26
4.1.3 Survey . 27

4.2 Supplementing and pre-processing heterogeneous data 28
4.2.1 Considering missing values . 28

Publication metadata . 28
Author metadata . 30

4.2.2 Clustering publishers, CBK genres and themes 31
4.2.3 Preprocessing of text . 33

v

TDIDF and Word2Vec . 33
BERT . 34

4.2.4 Integration of linked data . 35
4.3 Feature Engineering . 37

4.3.1 New features . 37
Age and concatenated content feature 37
Statistical features . 38

4.3.2 Representing data in machine-interpretable forms 38
One hot encoding . 38
Count vectorization . 39
Reducing dimensionality with compressed sparse row matrices 39
Latent semantic analysis with truncated singular value decom-

position . 39
Standardization of numerical features 40
Classifier model versus similarity model 40

4.4 Modelling the similarity space . 41
4.4.1 Calculating similarity between content related features 42

4.5 Machine learning models . 43
4.5.1 Experimental setup . 44
4.5.2 Evaluating metrics . 45
4.5.3 Technical implementation . 46
4.5.4 Optimization . 47

5 Results 48
5.1 Baseline performance . 48
5.2 Experiment 1: Author classification . 49
5.3 Experiment 2: Similarity learning . 53
5.4 Feature importance and relationships with machine learning 56
5.5 Human perception of feature importance for authorship attribution . . 58
5.6 Experiment 3: Comparing textual representations with deep learning . 59

6 Discussion 62
6.1 Machine learning algorithmic performance 62
6.2 Addition of contextual publication metadata and author information . 64

6.2.1 Contextual publication metadata 64
6.2.2 Author information . 66

6.3 Differences between expert and machine regarding usage of informa-
tion for authorship attribution to publication 67

6.4 Methodology comparison: similarity learner versus author classifier . 68
6.5 Text representations . 70
6.6 Applicability beyond the KB . 72

7 Conclusion 74

Bibliography 75

vi

List of Figures

2.1 Main methods of ensemble learning visualized: bagging (parallel learn-
ing) versus boosting (sequential learning) 9

2.2 Simple neural networks and deep neural networks 10
2.3 The underlying training models in the Word2Vec architecture 13
2.4 Masked Learning Model . 15
2.5 NSP visualized . 15

3.1 Data examples for content related features (title and abstract). 20
3.2 Data examples for language and publishing related features. 21
3.3 Data examples for genre and themes classifying features. 21
3.4 Data examples for author information. 21
3.5 LEFT: range of number of publications for all authors. RIGHT: num-

ber of total records for classes (authors) with the same number of in-
stances (publications). 22

4.1 Percentages of missing values for each feature 28
4.2 Distribution of ages at publication . 30
4.3 The pre-processing pipeline for textual data 34
4.4 BERT’s own pre-processing structure . 35
4.5 Training structure of the data for conversion to the similarity space . . 41
4.6 Distribution for authors with ambiguous names for (A) publications

and (B) normalized for total number of instances associated with that
number of potential authors . 45

4.7 Implemented neural network architectures for TFIDF (left) and Word2Vec
(right) based text classification. 47

5.1 Performance of baseline model 1 and model 2 for different test sets, as
calculated in precision, recall and f1 respectively. 49

5.2 Comparison between the used machine learning algorithms (see Table
4.6) based on 10 fold cross validation. 50

5.3 Comparison between the two best classifier models for precision, re-
call and F1 score for test sets that become increasingly difficult. 51

5.4 Comparing different types of similarity learners (see Table 4.6) based
on MSE scores. 53

5.5 Comparison between the best similarity learners (GBM and DT) for
precision, recall and F1 score for test sets that become increasingly
difficult. 54

5.6 Performance for recall@k set for different values. Recall@k = 10 is only
calculated for rankings with at least 10 potential authors. 56

5.7 Correlations between input features and target variable (correct au-
thor) for the top 15 features with the highest correlations. 57

5.8 Relative feature and permutation importance. 57

vii

5.9 Relative feature and permutation importance without title, publisher
and year of publication. 58

5.10 Perceived importance of the features as indicated by the respondents
(N=18) of the survey. 59

5.11 Performance for different types of textual representations for machine
learning. 60

viii

List of Tables

3.1 Data descriptions of various metadata features. 22

4.1 Perceived importance of different features for expert authorship attri-
bution . 25

4.2 Heuristic for imputing role-based values 30
4.3 Input errors or ambiguity in publisher feature 31
4.4 Distinct number of values before and after clustering 33
4.5 Various statistics regarding the different sources for integration of linked

data . 36
4.6 The used machine learning algorithms and text representations for

different experiments . 44

5.1 Performance of baseline models as measured in precision, recall (=
accuracy) and F1 score. 48

5.2 Performance of the SVM classifier on the test set using standard pa-
rameter values and tuned parameter values (on all publications that
can be linked to 5 to 20 potential authors). 52

5.3 Performance of the classifier for different feature inputs, with a focus
on the addition of the contextual publication metadata (Chapter 3)
and created features (Section 4.3.1). 52

5.4 Performance of the similarity learner on the test set using standard pa-
rameter values and tuned parameter values (on all publications that
can be linked to 5 to 20 potential authors). 55

5.5 Performance of different feature inputs for the GBM similarity learner. 55

6.1 Summary of the final performances of the best performing models
from the differing implemented methodologies. 68

ix

List of Abbreviations

SVM Support Vector Machine
LDA Linear Discriminant Analysis
DT Decision Trees
NB Naive Bayes
NN Neural Network
k-NN K-Nearest Neighbors
NCC Nearest Cenroid Classifier
GBM/GB Gradient Boosting Machine
RF Random Forest
PC Percepton
LR Linear Regression
LogR Logistic Regression
BR Bayesian Ridge
EN Elastic Net
ADA Adaboost

1

Chapter 1

Introduction

1.1 Authorship attribution

Authorship detection revolves around the notion of attributing an author to a cer-
tain piece of text or metadata that characterizes that text. The concept of authorship
detection was already established over a century ago, when early findings showed
that authors have distinct stylistic as well as content-based characteristics ingrained
in and revolving around their writings (Stamatatos, 2009). With this key notion of
textual traits being defined by their authors in mind, research in this field rose to
prominence shortly after. This was due to the belief that application of author de-
tection would be greatly beneficial in day-to-day tasks (Kale and Prasad, 2017). Ap-
plication of author detection would mean that manual attribution of authors to texts
would be a thing of the past, and thus cost-inefficient, laborious tasks would effi-
ciently be replaced (Stamatatos, 2009). Especially, considering the current age where
the world wide web facilitates ever growing (textual) data and publications that can
be linked to authors. This idea came to fruition, as in the present-day the implemen-
tation of said authorship detection has been shown to be useful in a number of areas,
such as bibliometrics, information retrieval and plagiarism detection (Rexha et al.,
2018). For doing so, different approaches as well as techniques have been developed
as support for research and also applied in practical settings.

However, in real life settings not every institution that works with the concepts
of authors and associated texts have the opportunity to work with complete data,
balanced data or full texts (Provost, 2008). Among the reasons for such incomplete
data could for example be, lack of actual data (not available due to random or non-
random reasons), not having the rights to work with full texts or human input er-
ror (Hughes et al., 2019). This is combined with the notion that author classifica-
tion problems causes an unique multi class classification problem with a substantial
number of classes to predict from (Qian et al., 2015; Castro et al., 2015). This incom-
pleteness and heterogeneous character of underlying data traverses author detection
in multiple ways, especially if ambitions for automated author detection are in place
as reliable predictions of authors can no longer be consistently made (Rexha et al.,
2018).

Based on a case study this thesis will conduct a systematic approach to find how
complicated, heterogeneous as well as sparse data can be used for the goal of ma-
chine learning based author detection, with the goal to ultimately automate author
attribution to publication. In addition, this thesis introduces an extensible pipeline
that can effectively work with this type of data and lead to accurate and robust pre-
dictions. While doing so, this thesis will also provide specific contributions to cur-
rent under-researched or complex areas within artificial intelligence research, these
can be defined with the following research questions:

Chapter 1. Introduction 2

• Does the addition of (1) contextual author information or (2) contextual publication
metadata to heterogeneous data increase prediction accuracy and robustness, and how
do these types of metadata compare to each other when used as input for a machine
learning model? (section 2.1.2)

• To what degree can the complexities of the prototypical authorship attribution class
imbalance problem be alleviated by converting publication and author data to the sim-
ilarity space? (section 2.3.2)

• How do different types of text representations for heterogeneous and sparse textual
data affect model predictions? (section 2.2)

• Do bibliographical metadata experts differ in work approach and their perceived impor-
tance of information for authorship attribution in comparison with machine learning
models? (section 4.1)

• How can we obtain the most optimal performance when considering sparse and het-
erogeneous data input for (1) author classification and (2) similarity learning machine
learning tasks? (section 2.1.3 and section 2.1.4)

The addition of contextual information for the purpose of text classification is
a field with limited research (Ostendorff et al., 2019; Ráez, López, and Steinberger,
2005). However, for the integration of contextual information for authorship attri-
bution no research has yet been conducted. A 2018 study showed potential for in-
cluding contextual information in the medical field, which could indicate that this
can be useful for other domains (Blanco et al., 2020). In this thesis contextual author
information will consist of autobiographical information about an author as well
as a summarizing embedding of previous works done by the author, while contex-
tual publication information will consist of information that describes the text of the
publication as well as the publishing details of the publication.

In addition, different representations of text can lead to significant differences
for results, however research for heterogeneous textual data is, also, still limited.
The field of representing text can be divided into three main approaches: usage of
term weighting schemes, word embeddings and contextualized embeddings (Grze-
gorczyk, 2019). All of these representations have their own benefits, but comparing
performances with heterogeneous input data can showcase whether state-of-the-art
contextualized semantic embeddings outperform more traditional static semantic
embeddings or matrices representing topical importance.

Furthermore, similar data-structure problems can be found in other datasets and
domains as well (Nazábal et al., 2020; Imtiaz and Shah, 2008; Kang, 2013; Wang,
2017). As such, the systematic approach as described for author detection can then
be perhaps seen as an universal pipeline for combining machine learning and het-
erogeneous, sparse textual (and non-textual) data.

1.2 Background

This research is based on data made available by the Koninklijke Bibliotheek (KB, na-
tional library of the Netherlands) situated in The Hague, The Netherlands. The KB
tries to house all Dutch publications, as well as publications in other languages but
published in the Netherlands. This makes the KB the biggest library in the Nether-
lands in terms of storing Dutch publications. For scoping purposes, this thesis will

Chapter 1. Introduction 3

focus on all available publications classified as children’s literature. This data con-
sists of 245.140 book records as written and illustrated by 488.048 authors, spanning
several centuries of publication. The publications are predominantly Dutch publica-
tions (approximately 90%), but publications from other languages are also included.
The publications are described by different types of data which will be discussed in
Chapter 3.

This data is used by the KB to link authors related to publications to a central
database called the Nederlandse Thesaurus van Auteursnamen (NTA) 1, for struc-
tural purposes and to be able to efficiently collect publications by the same author.
The task consists out of two aspects, on one hand a publication record and on the
other hand a set of potential authors. The list of potential authors are authors that
all have exactly the same name, with ultimately the goal being that the correct au-
thor needs to be linked to the associated publication record. This task is problematic
in nature and propagates the main incentive for this thesis. Since this is a task that
is currently done manually, this is seen as a cost and time inefficient task in many
scenarios. This is especially the case if the author to be linked has a name that fre-
quently occurs in the database, this task then becomes increasingly laborious as the
dozens to potentially thousands of authors with the same name have to be inspected
before linking the author-publication record to the correct author in the NTA. An ex-
ample for such an ambiguous author name includes the name ’J. Jansen’, which is
the name of 4854 different authors. This number can be indicative of the problematic
nature of manually linking every author-publication record to authors in the NTA
with ambiguous names. Therefore, to alleviate this laborious task, ideas of automat-
ing author attribution to publication have been proposed. However, the potential of
artificial intelligence and more specifically machine learning has yet to be discovered
for this purpose.

In this thesis we investigate a solution to automate or make it easier and less time
consuming to attribute authorship to publication. Artificial intelligence could play
a role with much potential for this, as the task qualifies to be done by a supervised
machine learning model due to all existing publications being labelled with their
correct authors. Integrating machine learning leads to an automated task where the
most plausible author for being the correct author out of a list of potential authors
is chosen based on probability. The probability is determined by learning patterns
in the existing collection of publications and seeking which author fits the current
to-be-attributed publication record based on corresponding characteristics found in
their previous works. As the set of existing publications is large enough to be able
learn from this shows great potential theoretically. However, as previously men-
tioned in the Introduction the data itself has problems of its own that ultimately
make it a challenging task that needs research. We discuss these challenges with re-
gards to the data in Chapter 3, but first present an overview of related work and the
theoretical foundations of this thesis in Chapter 2.

1https://www.bartoc.org/nl/node/18680

4

Chapter 2

Theoretical background and
related work

2.1 Author Detection: Usage of Machine Learning

Author detection has been an area of research for nearly 150 years (Mendenhall,
1887). Early attempts at author detection revolved around using univariate mea-
sures to characterize a particular author in terms of the style adapted for writing.
Some examples for this purpose include analysis of the word frequencies of specific
words in a text (Mendenhall, 1887), but also analysis of the mean length of a sen-
tence or a word in a text (Yule, 2014). The earlier attempts showed some potential,
however, ultimately showed to be inadequate for the bigger purpose of systematic
author detection (Grieve, 2007). With the rise of machine learning in recent decades,
the integration of machine learning for the purpose of author detection proved to
have increased levels of effectiveness and accuracy of author attribution to a certain
piece of text (Sebastiani, 2002). When using machine learning, a key distinction has
to be made between using supervised learning versus unsupervised learning (Al-
loghani et al., 2020). The main difference between these two types of learning is
that in supervised learning environments there is a ’ground truth’, i.e. the publi-
cations in the data that is trained upon are labelled accordingly with their authors.
In unsupervised learning a ground-truth is not available and thus this means that
classification is based on unlabelled data. For the research conducted in this thesis
ground-truths have been provided as all publications are labelled by their respec-
tive authors, meaning that literature considering supervised learning will be mainly
taken in consideration.

Another key distinction for author detection is the notion of having input data in
the form of full texts or smaller texts (Chandra Sekharan, 2017). Full texts indicate
that all text of the publication is available and ready for use. This gives more input
for classification and therefore could provide more grounds for characterizing a doc-
ument (Grieve, 2007). The other option is the usage of smaller texts, which indicates
that documents consist of a sentence or a paragraph at most.

In this thesis text types of shorter nature are part of the available data of the KB.
Specifically this means that text input will be in the form of text snippets existing
of title, summary of the publication and other annotations about the publication.
However, only the title can give an indication of the writer’s stylistic characteristics
as it is usually fabricated by the writer. The other type of textual features (abstract,
annotations) tell us more about the content of the book as they are usually written
down in conjunction with third parties. Thus, a combination of syntactic as well
as semantic analysis will play a role in substantiating a machine learning model’s
ability to learn from textual input.

Chapter 2. Theoretical background and related work 5

Other differences with the typical studies on the subject include the availabil-
ity of contextual metadata. These are mostly categorical or numerical features that
give some insight about the publication (see Chapter 3). Thus, in its totality the
input data can be classified as ’smaller text’ input with contextual metadata in addi-
tion. Accordingly, the literature research for this aspect will mainly focus on machine
learning performance based on data inputs of this nature. An overview of the possi-
ble techniques and approaches for this purpose will be researched, however, a start
will be made by considering if techniques for full text analysis can be also be fruitful
for smaller text analysis.

In similar nature, converting the data to the similarity space for an alternative
approach for the problem at hand will be discussed in Section 2.3.2.

2.1.1 Drawing insights from author detection in full text inputs

Author detection in full texts, e.g. all text of a published book or article, could add
precedence for performing a more in-depth stylometric analysis (Rexha et al., 2018).
This poses to be a more difficult concept in smaller texts as there might not be ad-
equate text to detect stylometric characteristics (e.g. in a title of a book) (Rexha et
al., 2018). In addition, only one of the textual features available is usually directly
written by the author, which rather makes this a limited option.

Furthermore, analysis of full text includes text segmentation techniques such as
style breach detection and author clustering, followed by learning (Tschuggnall et
al., 2017). Style breach detection characterizes itself by splitting texts based on shifts
of topics, which makes this not a viable solution for shorter text snippets that are
centralized on summarizing a publication (Khan, 2017). Other usage of full text for
the purpose of learning, however, show possibilities for the same usage with shorter
text snippets. For example, a study that includes syntactic graph feature extraction
methods which allows for integration of multi-layered language descriptions into
a single structure (Gómez-Adorno et al., 2016). An alternative approach is using
Deep Learning for learning from full texts (Mohsen, El-Makky, and Ghanem, 2016),
this was done by using variable size character n-grams while using the Stacked De-
noising Auto-Encoder (SDAE) for extracting document features. Afterwards a SVM
is used for classification. Common ground can be found in the latter two studies
as they provide some insights for author detection in full-text settings, while not
depending on text segmentation or stylometric analysis too much, which can essen-
tially also be used in shorter text snippet inputs.

2.1.2 Author detection in smaller texts and associated metadata

Most research focuses on author detection revolving around full or complete text
inputs (Denecke, Risse, and Baehr, 2009), while this thesis will focus on smaller
text inputs (in the form of bibliographical descriptions). Such techniques applied
to specifically smaller texts and associated metadata for the purpose of classification
include the use of linear predictive modelling such as SVM (Diederich et al., 2003;
Koppel, Schler, and Argamon, 2009; Fissette, 2010; Sudheep Elayidom et al., 2013;
Schwartz et al., 2013), DT (Abbasi and Chen, 2005), NB (Abuhaiba and Dawoud,
2017) and LDA (Seroussi, Zukerman, and Bohnert, 2011; Seroussi, Zukerman, and
Bohnert, 2014). As well as ensemble learning (Gressel et al., 2014; Kilinç, 2016; Liu
et al., 2017) and on the other hand the use of neural networks (Ge, Sun, and Smith,
2016; Shrestha et al., 2017; Ruder, Ghaffari, and Breslin, 2016). The different types

Chapter 2. Theoretical background and related work 6

of supervised learning models, as well as their potential performance on heteroge-
neous data, will be discussed in section 2.1.3 and 2.1.4.

Research articles that focused on supervised learning for author detection, with
sparse text inputs combined with the use of associated metadata or contextual infor-
mation have not been found. In fact, only limited works exist on using bibliograph-
ical information, such as textual snippets and metadata, for any classification pur-
pose (Ráez, López, and Steinberger, 2005). However, a study is found that includes
metadata and textual data as input for the purpose of author document classifica-
tion, and was recently published (Ostendorff et al., 2019). The publication metadata
consisted for example out of various information such as publication date, number
of authors and the title of the publication. This metadata was represented as features
and authors were represented through automatically generated graph embeddings
as additional metadata. This caused the creation of dense vector representations
for each author in a way that distances between vectors (i.e., the topical similar-
ity between the authors) can predict the occurrences of edges in the graph. Using
Wikidata, subsequently the graph model was trained and a translation operator was
used to represent relations. A neural network that generates BERT word embed-
dings (Adhikari et al., 2019) was used to derive contextualized representations from
textual features, and accordingly text and non-text features were concatenated and
fed through a multilayer perceptron. Through this way of combining the different
types of the data the model could then make predictions. The model performed rel-
atively well on generalized labels, but had difficulties in detecting the actual labels
on a more granular level and focused on classifying genres instead of authors. Even
though the ultimate goal is different with the goal in this thesis this provides some
useful insights in how to combine different types of textual and non-textual data.

A study with similar heterogeneous and sparse metadata also showed great po-
tential, this study was also done in the domain of bibliographical research (Denecke,
Risse, and Baehr, 2009). In this study limited bibliographic metadata was used, such
as author name and information about the title. Consequentially, features are cre-
ated and the text is pre-processed using n-grams frequencies. Two main features
are created in the form of a class specific score, which tells us something about the
similarity of a document and the class. In addition, a feature that tries to summarize
a title with a keyword is created. In comparison to this thesis, a similar feature that
maps keywords of the titles is available in the database provided, and a score can
be calculated given the available data. After this, machine learning was used after
applying a rule-based classification methodology in order to classify a text to 1 of the
6 possible topics. Different types of machine learning algorithms were used where
ensemble learning (boosting with LogitBoost) proved to grant the best results. An
interesting finding, is that author and publisher information performs worse when
confined for input, while usage of class-specific-scores and publication metadata
provides the highest accuracy. Even though this will differ from dataset to dataset,
this could potentially tell us something about the usefulness of different types of
metadata. Ultimately the model produces good results with up to 87% accuracy
of prediction accuracy. Even though, the number of possible classes in this study
is very limited, 6, meaning it does not compare with the complexity of the author
classification problem, it showcases that even with limited bibliographical metadata
great results still can be (efficiently) achieved.

When extending the scope to other domains, more research can be found with
similar types of inputs for text classification. Including a study that focused on
classifying app reviews with different review types as labels (bug reports, feature
requests and so forth) (Maalej et al., 2016). Heterogeneous text inputs are used,

Chapter 2. Theoretical background and related work 7

however additional (numerical) metadata such as star ratings is also used. Different
experiments are conducted using a naive bayes machine learning model. Ultimately,
the combination of metadata and preprocessed text inputs gave the best results, over
only the usage of metadata or only texts. In the end accuracy scores of around 90%
are achieved. This study indicates the usefulness of adding metadata descriptive
of the textual information, as well as using techniques such as NLP for shorter text
inputs.

On another note, a study focused on solely investigating the impact of adding
metadata for patent classification (Richter and MacFarlane, 2005). Even though this
was not for the purpose of author detection, some types of metadata that are used
in this study are similar to those used for author detection. Some of this similar
metadata includes author names, publication date and author affiliation. Using the
k-nearest neighbour algorithm classification was ultimately done, and a compari-
son of a model using the aforementioned metadata versus a model that does not
use metadata was done. Usage of metadata ultimately increased classification ac-
curacy by 5% and recall with approximately 3%, which were deemed statistically
significant. However, a search for the right parameters was also essential as the
usage of wrong parameter values could have the opposite effect (i.e. deterioration
of accuracy after adding metadata). The study concludes that adding metadata or
contextual information can be ’extremely useful’ for classifying patents, but war-
rants that usefulness of metadata should be reviewed on a case-to-case basis. In the
context of this thesis, the usefulness of available metadata (both publication specific
and author specific data) is explored by interviewing metadata-specialists (Section
4.1) before its addition to the input data. Furthermore, the addition of different types
of data is also reviewed incrementally in Section 5.2 and 5.3.

In other related work more examples can be found, including text classification
for inferring gender of movie reviewers (Otterbacher, 2010), web documents clas-
sification (Fathi, Adly, and Nagi, 2020) and text classification in the legal domain
for the purpose of predicting the ruling of a supreme court (Sulea et al., 2017). The
conclusions of these studies are in line with earlier mentioned studies. A trend can
be observed when considering the different studies, namely that augmenting sparse
or heterogeneous text snippets with metadata always has a net benefit while not in-
creasing computational complexity drastically. Even though, the considered studies
vary significantly in terms of the domains of application, they are all similar in the
sense that they emphasizes on the usefulness of adding metadata that describes text
while having varying machine learning pipelines. This is remarkable, as the addi-
tion of (created) metadata describing sparse textual inputs overall is still a scarce
practice (Otterbacher, 2010; Ráez, López, and Steinberger, 2005; Denecke, Risse, and
Baehr, 2009).

Overall, conclusions can be made that preprocessing of textual data and feature
engineering in combination with the addition of metadata achieves empirically good
performance when used with heterogeneous and sparse data inputs. Albeit, none of
the studies had the goal of author detection, the findings and conclusions are per-
suasive as the underlying data structures (and even some of the features) are simi-
lar. Therefore, these studies and their respective conclusions should be considered
for the problems described in this thesis. When translating these conclusions to this
thesis we can for example use contextual bibliographical metadata, as well as pos-
sible author information to enhance the information that defines the author labels.
Similarly we can preprocess the publication text and preprecocess non-textual data
in various ways, apply feature engineering and integrate linked data (which we will
discuss in Section 2.3.1).

Chapter 2. Theoretical background and related work 8

2.1.3 Linear modelling and ensemble learning

As section 2.1.2 showcases, there are multiple viable options when it comes to using
different machine learning algorithms for author classification with heterogeneous
data inputs. As different machine learning algorithms can vary on a case-to-case ba-
sis in regards to performance, most of the time there is not a streamlined approach
for implementation. Implementing the different, viable options and comparing them
with each other will prove to be useful for garnering insights and finding the best
performing model. For this purpose, we will consider three types of commonly used
machine learning algorithm categories, which consist of (1) linear modelling, (2) en-
semble learning and (3) neural networks or deep learning. In this section we will
discuss linear modeling and ensemble learning, as they tend to be used in similar
real world settings with regards to heterogeneous data inputs. The usage of neural
networks and deep learning will be discussed in Section 2.1.4.

Linear modelling

Linear modelling exists of classical machine learning techniques such as SVM, LDA,
Naive Bayes (classification) as well as logistic regression, ridge and lasso (regres-
sion). Linear classification and regression models use linear properties related to the
characteristics of the input data. These linear properties are estimated by the model
from relationships found within predictors (the features) and output variables (class
or regression outcome) (Yuan, Ho, and Lin, 2012). These types of algorithms can
either be generative or discriminative in their determination of the parameters of
a linear model. Generative models (e.g. NB and LDA) model conditional density
functions while discriminative models (e.g. SVM and logistic regression) perform
regularization on the final model while maximizing output of the training set. Both
can perform reasonably well on tasks with many features as well as heterogeneous
data inputs, as referenced in Section 2.1.2. A collection of linear classification and
regression models will be taken and used for this thesis and their performance will
be compared. To engage with the research problems of this thesis a focus will placed
on using models that have properties implemented that could (theoretically) work
well on heterogeneous data inputs. In addition to some of the named models, an
example of a model specifically catered for such tasks is the Stochastic Gradient De-
scent (SGD) algorithm with a modified huber loss function, which makes sure it is
not heavily influenced by outliers or low-information density data (replacements of
missing values) in the data learned upon (Zhang, 2004). At the same time SGD does
not completely ignore outliers either, which means it considers both aspects.

Ensemble learning

Ensemble learning introduces an area of machine learning where multiple models
are combined through ensemble techniques. Theoretically this leads to better perfor-
mance as they use different ’perspectives’ in their substantiation for making predic-
tions (Zhou, 2012). These perspectives provided by different models tend to lead to
decreases in noise, bias and variance, which are usually the main factors for cause of
error in predictive modelling. In accordance, empirically ensemble learning has lead
to better performing models if there is significant difference between the predictive
nature and output of the models (Rokach, 2010). Heterogeneous data input tends to
naturally produce diversity among models, which makes ensemble learning a the-
oretically well-reasoned fit for this thesis (Gashler, Giraud-Carrier, and Martinez,
2008).

Chapter 2. Theoretical background and related work 9

Within the field of ensemble learning, there are various techniques for creat-
ing the ensemble model. There are simple methods such as taking the mode or
(weighted) mean of the output results, but there are also more advanced methods.
Most popular advanced methods are the ensemble methods of (1) bootstrap aggre-
gating (’bagging’) and (2) boosting (Zhou, 2012). A visualization of both techniques
can be found in Figure 2.1. Bagging perpetuates different models to train in parallel,
upon different subsets (samples) of the data. Afterwards the output of all models
are combined through majority voting. A robust ensemble learning algorithm for
this type of technique is random forests which will be explored in this thesis. Ran-
dom forests takes an extra step in comparison to base versions by ingraining ran-
domly chosen features for the different samples, which has empirically performed
well (Breiman, 2001).

FIGURE 2.1: Main methods of ensemble learning visualized: bagging
(parallel learning) versus boosting (sequential learning)

On the other hand, boosting is a technique that uses iterations with adjustments
of weights based on the performance of prior classifications. If a previous classifi-
cation was incorrect, then the weight of that sample will be increased. Unlike with
bagging, boosting trains without the binding of models to certain subsets and in-
stead the models train on all data, however, in a sequential fashion. Thus, models
learn upon the mistakes of previous models and are fitted to the residuals of the prior
models. Essentially, this creates a set of weak learners that will gradually convert to
a strong learner. Examples for ensemble algorithms implemented with boosting is
Gradient Boosting and AdaBoost, both of which have empirically had great results
(Mason et al., 1999; Freund and Schapire, 1996). When comparing between the two
main techniques, boosting has empirically performed better (with hyperparameter
tuning) than the bagging approach in multiple studies (Bühlmann, 2012). However,
both will still be taking in consideration due to the intrinsic trait of specifically the
bagging algorithm of random forests that prevents overfitting, as well as both types’

Chapter 2. Theoretical background and related work 10

characteristic performance on heterogeneous data inputs (Gashler, Giraud-Carrier,
and Martinez, 2008).

2.1.4 Deep learning and neural networks

Contrary to linear modelling, neural networks can estimate non-linear relationships
between variables and are known for approximating complicated functions of rich
vectors of input variables (Wang, 2003). Thus, in this type of learning non-linear
transformations are instead learned. A neural network’s prototypical lay-out exists
out of a multitude of networks composed of several layers. These layers in turn
exist out of nodes where inputs are combined with computationally determined ad-
justable weights, which determine how the input should be perceived by the model.
This can cause, for instance, amplification of the input’s importance in relation to the
learning task (such as attributing authors, based on the different feature values, to
publications). Ultimately the product of the input and weight functions lead to a net
input function (which combines all input-weight products) that is fed to an activa-
tion function. This is an important step, as the activation function (of a node) deter-
mines to what extent the node’s output should affect the rest of the neural network
as well as to what extent the signal proceeds through the network (thus influencing
the prediction made by the model). The layers are chained in such a way that an
output layer is usually also an input layer, which gives the ’network’ lay-out, and
this task is done for all nodes (of the different layers) in a parallel fashion. The in-
termediate layers between the first input layer and the final output layer are called
hidden layers, where all the mentioned calculations (using input, weights and acti-
vation functions) happen. Variations exists in the form of deep learning networks,
which are known to be intrinsically more enriched as they contain more hidden lay-
ers through which data inputs will travel and activated for learning patterns (such
as BERT). A visualization of both types of neural networks can be found in Figure
2.2, which also showcases the described path of input data travelling through the
network to the output layer.

FIGURE 2.2: Simple neural networks and deep neural networks

Since most of earlier mentioned studies use linear machine learning models for
similar tasks, these will mostly be used for modelling. This might be theoretically
suitable due to the notion that descriptive contextual metadata is usually categorical
of nature (and thus introduces mostly simplistic relationships between predictors
and outcome variable). Using neural networks for linear data inputs might not be
suitable and have adverse effects (Jiao et al., 2020; Park, 1994; Lee et al., 2017). The
benefit of this aspect is that linear models tend to be much faster for training and
research in experimental setups as well as use in production settings with similar

Chapter 2. Theoretical background and related work 11

levels of accuracy (Yuan, Ho, and Lin, 2012; Park, 1994; Lee et al., 2017) . Ensemble
learning proves to be a middle ground between linear models and neural networks
in terms of training time but should theoretically perform better than singular linear
models due to the integration of the ’multi-perspectives’ theorem.

Neural networks take the most time to train (and use), but can derive more com-
plex patterns and partake in deeper learning from nonlinear data, which in the case
of this thesis will primarily come from text representation data (Wang, 2003). Thus,
the usage of neural network becomes interesting for determining the effect of dif-
ferent textual representations. As text representations of publication text, such as
titles and abstracts, can lever wide arrays of input variables this gives a better fit
for input in a neural network compared to linear models (Grzegorczyk, 2019). The
heterogeneity problem found in the dataset, is also found on a feature-level within
the textual features. This type of data can showcase how newer language models
such as BERT perform on these types of texts versus word embeddings and term
weighting schemes, which is also one of the main research points as defined in the
introduction.

For Word2Vec and BERT, which are both NLP techniques implemented with neu-
ral networks, pre-trained models exist that can reduce the computational intensity of
the training task of creating word-embeddings to specifically learning from text in-
puts of our dataset. The theoretical properties and differences of these text represen-
tation variations, with their underlying neural network structure, will be discussed
in Section 2.2.

2.2 Author Detection: Text Representation

For authorship attribution, text can be represented in various ways. Text represen-
tation is a crucial part of the author detection pipeline, as text can not be interpreted
in its ’raw’ form by machine learning models. Therefore, text has to be represented
in a computational useful way that represents meaning of words and makes topical
and stylistic differences between texts apparent. Various ways have been designed
for this purpose, and the most useful ways for the purpose of author detection in
smaller texts will be presented in this section.

2.2.1 TFIDF

Term frequency-inverse document frequency (TF-IDF) is a numerical, statistical rep-
resentation of words that indicate the importance of a word in relation to a document
in a corpus (a collection of documents) (Karen, 1972). It is a type of vector space
modelling (Salton, Wong, and Yang, 1975), where the numerical values are stored in
a model to represent the set of words that entail a document as a vector. It is often
used in Natural Language Processing, a sub domain of AI and has empirically been
shown to be effective and efficient (Qaiser and Ali, 2018; Shi, Xu, and Yang, 2009;
Ramos, 2003). TFIDF is also one of the most popular text representations following
a term-weighting scheme in present day, and approximately 83% of recommender
systems use TF-IDF (Beel et al., 2016).

From a theoretical background TF-IDF can be separated into two components:
TF and IDF (Shi, Xu, and Yang, 2009). TF stands for term frequency and can be seen
in Equation 2.1. Here fd(t) stands for the number of times term t appears in docu-
ment d. The denominator that encapsulates max

w∈d
fd(w) represents the total number

of words w in document d.

Chapter 2. Theoretical background and related work 12

tf(t, d) =
fd(t)

max
w∈d

fd(w)
(2.1)

The second part of the TFIDF formula can be seen in Equation 2.2 which rep-
resents the idf term. IDF stands for inverse document frequency and explains the
number of documents a word appears in. In Equation 2.2 |D| represents the total
number of documents, while the denominator represents the total number of doc-
uments D with term t (of a document d) in it. Finally, the logarithmic value of the
resulting product is taken.

idf(t, D) = log
(

|D|
|{d ∈ D : t ∈ d}|

)
(2.2)

After calculating both components of TFIDF, the multiplication of the two com-
ponents is calculated for the TFIDF value for a term in a document given all docu-
ments, as is shown in Equation 2.3.

tfidf(t, d, D) = tf(t, d) · idf(t, D) (2.3)

TFIDF normalizes words (terms) that might appear frequently within a docu-
ment, but also appear frequently in all documents. Vice versa, words that appear
frequently within a document but not in a general sense will emphasizes the exclu-
sivity of the topical leanings of that document. As a result, terms of different doc-
uments can be accordingly weighted to their importance based on their frequency
in relation to the whole corpus. This makes it easier to differentiate between differ-
ent documents and thus can be used for comparing documents in terms of topical
similarity.

2.2.2 Word embeddings: Word2vec and fastText

While TFIDF provides insightful numerical representations of text and is useful for
topic modelling as well as measuring topical similarity, it has its limitations in de-
riving semantic meaning in text. Usage of word embeddings are an alternative ap-
proach. Word embeddings are more catered to deriving semantic and syntactic sim-
ilarities between texts and thus can be useful as well for the purpose of attributing
the right author to a piece of text (Naili, Chaibi, and Ben Ghezala, 2017). This is
based on the notion that different texts can have different words but share similar
meaning.

In essence, a word embedding is a mathematically driven embedding from a
higher-dimensional space to a continuous lower-dimensional vector space (Mikolov
et al., 2013; Naili, Chaibi, and Ben Ghezala, 2017). This means that words will be
represented as real-valued vectors and mapped to a predefined vector space. These
words are represented as densely distributed representations, which are in turn de-
rived by considering the used vocabulary and how different words are used within
different contexts. When words seem to share a similar type of usage or contextual
placement within text they will get similar representations, hence indicate the same
semantic meaning. Different types of distant metrics can then be applied to find
which vectors are similar in representation.

Within the field of word embeddings different algorithms for implementation
exit. For scoping purposes this thesis will in this category focus on two variations.
One of these variations is the most frequently used word embedding model, and has

Chapter 2. Theoretical background and related work 13

also been dubbed as the unofficial standard for developing pre-trained word em-
beddings. This is the so called Word2Vec method, which was developed in 2013 by
Tomas Mikolov (Mikolov et al., 2013). Word2Vec is a group of shallow models that
are two-layer neural networks, that can derive word embeddings efficiently. Fur-
thermore, Word2Vec is especially useful due some of its inherent beneficial features,
these include (1) low space and time complexity, (2) possibilities of learning larger,
higher-dimensional embeddings and (3) working effectively on extensive corpora
(existing of up to billions of words) (Li et al., 2019; Mirończuk and Protasiewicz,
2018; Naili, Chaibi, and Ben Ghezala, 2017). The other variation we use is known as
fastText, which operates similarly as Word2Vec, but represents words as n grams of
characters instead of full words and learns upon these representations instead. This
key difference in representation of words for training can lead to an improvement
in performance as coverage of words increases, which especially becomes noticeable
when trying to deal with out-of-vocabulary words.

Word2Vec and fastText operate following either a underlying Continuous Bag-
of-Words (CBOW) model or a Skip-gram model. The architecture of both models
can be seen in Figure 2.3. In the CBOW approach the model examines the words
surrounding the to-be-predicted-word and tries to infer context and based on that
predict word W(t). Each word is consecutively represented as a vector resembling a
feature and ultimately become word vectors, post-training. On the other hand, the
Skip-gram model is essentially the CBOW model in reverse. Instead of surrounding
words, a singular word is used for input. Based on this singular input, surrounding
words are predicted and ultimately context is inferred that way. While CBOW is usu-
ally faster and operates more efficiently than Skip-gram, Skip-gram tends to achieve
higher accuracy with words that do not appear frequently (Suleiman, Awajan, and
Al-Madi, 2017). Depending on context this gives both options viable precedence for
usage.

FIGURE 2.3: Underlying training models in the Word2Vec architec-
ture. SOURCE: (Suleiman, Awajan, and Al-Madi, 2017)

When looking at the option of word embeddings in the context of the available
data, this makes it a good fit. The database that ultimately lists all dutch publica-
tions consists of millions of books. This considerable number of publications will in
turn lead to a corpus with many (distinctive) words. Thus, the aforementioned effi-
cient and scalable nature of Word2Vec and fastText make this computationally and
functionally a suitable alternative approach for representing the text of publications.

Chapter 2. Theoretical background and related work 14

2.2.3 Bidirectional Encoder Representations from Transformers

While Word2Vec, fastText and other word embedding models provide the adequate
means to carry out semantic similarity analysis given a set of documents, these ap-
proaches have their limitations as well. Examples include the inability to handle
Out-Of-Vocabulary (OOV) words (words that are not linguistically familiar) and the
ineptness to represent different contextual uses of the same word (homonymy) in
separate vectors (Naili, Chaibi, and Ben Ghezala, 2017). For instance, we consider
sentence A and B, with sentence A being "John bought a beautiful ring for Mary"
and sentence B being "The children sat on the floor in a ring". The word "ring" has
a different meaning in both sentences, but will get a singular vector representation
trying to map both contexts when using word embedding methods.

In 2018 Google developed a system encapsulating a pre-trained neural network
called BERT (Bidirectional Encoder Representations from Transformers) that has
been the best performing language model, as of to this date. State-of-the-art per-
formance was, consequentially, achieved on 11 different NLP tasks (Devlin et al.,
2018). BERT is a technique that uses contexualized embeddings for text representa-
tion, thus, meaning that in the aforementioned example the word embedding will
be different for every use of the same word (according to the sentence). This ap-
proach is fundamentally different from Word2Vec (and TFIDF), which in turn can
be an explaining factor in its state-of-the-art performance. However, as BERT is a
relatively new technique, the theoretical explanation for its state-of-the-art perfor-
mance has not yet been fully uncovered (Kovaleva et al., 2019). Several studies are
currently analyzing BERT from different perspectives for explainability in order to
understand its performance (Clark et al., 2019; Kovaleva et al., 2019).

Fundamentally, BERT is driven on the notion of pre-training deep bidirectional
representations from unlabeled text (Devlin et al., 2018). It combines bidirectional
training of a typical transformer machine learning model to language modelling,
which makes it a innovative technique (Devlin et al., 2018). Additionally, BERT
has also been applied to classification tasks with labels that are in line with the au-
thor attribution (classification) task with success (Sun et al., 2019; Adhikari et al.,
2019). Furthermore, while constructing bidirectional representations, BERT jointly
conditions in all layers on the entire sentence unlike with traditional directional en-
coders (which operate from left-to-right or right-to-left). Finally, BERT gets contex-
tualized embeddings through a combination of two underlying techniques before
its fed word sequences, this is done using (1) Masked Modeling (MLM) and (2) Next
Sentence Prediction (NSP).

The Masked Learning Model can be visually seen in Figure 2.4 and entails a set
of steps. First of all, the model uses a token called [MASK] which masks a certain
word. This is done for approximately 15% of the words, which is then used as a label
for prediction and input for the transformer encoder mechanism. At the output of
the transformer encoder layer, a classification layer is added for this purpose. Here,
the output vectors are transformed into the vocabulary dimension (’Embedding to
vocab step’ in Figure 2.4). The model tries to predict these words based on the sur-
roundings of the masked words, which are non-masked and thus resemble their true
values. Finally the masked word is predicted by calculating the softmax probabil-
ity for all words in the vocabulary and consequentially choosing the most probable
word. Even though non-masked words are also fed to the classification layer, these
are ignored as they are already ’seen’.

Parallel to this process, NSP is also trained. This process can be found in Figure

Chapter 2. Theoretical background and related work 15

FIGURE 2.4: Masked Learning Model (Gannon, 2019)

2.5. NSP encapsulates a different type of contextualization, whereas the focus re-
volves around seeking if two sentences are linked, i.e. sentence 2 is the subsequent
sentence of sentence 1. For this purpose BERT randomly designates 50% of the sen-
tences as a subsequent sentence in a pair in the input text, and 50% as a random
sentence from somewhere else in the corpus (and thus has no relationship with sen-
tence 1). Next to the process of NSP, Figure 2.5 also showcases the expected input
for BERT. Three different embeddings, which in summation form the input, can be
found:

1. Transformer positional embedding; indicating the position of the token in the
input text.

2. Sentence embedding; indicating to which sentence a token belongs

3. Token embeddings; indicating vocabulary ids for the respective tokens

FIGURE 2.5: Input sequences for BERT as well as NSP visualized (De-
vlin et al., 2018)

In the subsequent input we can also observe the masked words as seen for the
purpose of MLM, as well as two key tags: [CLS] and [SEP]. [CLS] denotes the first

Chapter 2. Theoretical background and related work 16

token of every sequence, it is used as a token for classification tasks. [SEP] is a
sequence delimiter token, which is used for the purpose of NSP to indicate when
two different sentences are separated. Ultimately, predictions are made by feeding
the combination of the different embeddings (the input) as seen in Figure 2.5 for the
subsequent transformer model. Afterwards a label indicating whether sequence A
is subsequent to sentence B is predicted (true or false).

Thus contextualization is done on sentence-to-sentence basis, as well as on word-
within-a-sentence basis. This gives the model a clear understanding of how words
are exactly used, and what their contextualized meaning entails. Therefore MLM
and NSP are trained together, and their respective loss functions are combined for
minimizing loss. This combination of loss functions makes it so the model trains at
an optimal level, however, at the expense of a slower convergence time.

For the goals of this thesis BERT has to be fine-tuned, as the task of author at-
tribution using associated text and metadata as input are specific tasks. However,
fine-tuning has been a main consideration as BERT’s usage was intended to be for a
set of varying NLP tasks. Therefore, fine tuning can be done relatively easily with
BERT without changing the architecture as it can already been achieved with only
one additional output layer. This notion makes it beneficial to use BERT (which we
will use in Section 5.6), as it is easily adaptable to a set of different goals (Devlin
et al., 2018).

2.3 Heterogeneous data for predictive modelling

Extending the sole scope of author detection, we also take a look at dealing with
heterogeneous data in a more general sense. Heterogeneous data brings forward
all kinds of problems that should be addressed in the pursuit of a model that can
make robust and accurate predictions. The data that is being used has mainly two
problems as previously mentioned: class imbalance and disparity of information
richness. Thus, this chapter will be centered around discussing the theoretical pos-
sibilities for implementing solutions to these two main problems, as well as how the
respective solutions performed in other research.

2.3.1 Disparity of information richness and availability

The stored data regarding publications differ significantly between the different pub-
lications, e.g. some publications have dozens of fields of metadata describing the
publication while other publications might only have a few fields to describe this.
This can be problematic as it can lead to a model that predicts its labels or likelihood,
in this case authors, with much less confidence as there is not enough metadata that
could be used for classification to associate certain values of the features with an
author. In turn, this could lead to bad predictions and thus a model that can not be
deployed in a real life setting. Next to this, not having enough data can also let au-
thors fade away from the overall ranking, as lack of data for a certain author means
that it will not match well with input (or test) data. Therefore the likelihood of this
author being ‘correct’ for prediction will decrease, even if the input/test author is
the exact same author and thus in fact should get predicted/be number 1 in the
ranking. This is a paradoxical situation that can diminish the power and accuracy
significantly of the model.

A few approaches can be considered to be a solution for this disparity in infor-
mation per publication, which will be discussed in this section.

Chapter 2. Theoretical background and related work 17

Preprocessing

Preprocessing is usually the first essential step in the machine learning pipeline
(Famili et al., 1997). It has the potential to deal with a multitude of problems with
data, as it can be a solution to missing, incomplete, erroneous, corrupt or out-of-
range data (Famili et al., 1997; Bhaya, 2017). Furthermore preprocessing can be use-
ful for transforming data in more meaningful ways, this could be for example done
by applying normalization, discretization or hierarchy derivation. Finally, reducing
dimensionality and numerosity as well as aggregating data are also procedures typ-
ical to the data preprocessing step. As these data problems usually contribute to
disparity in information richness on a feature-to-feature basis, this makes it a partic-
ularly fundamental step in processing heterogeneous data structures.

The data as provided by the KB has three main categorizations: numerical, cat-
egorical and textual data, which will be discussed more in depth and showcased
in Chapter 3. The numerical data is not sensoric but rather of describing nature.
For such numerical features, missing values can be imputed by using the median or
mean (depending on the distribution of the data). In some numerical features cases
this would not be a logical imputation, such as the age of the author at the time of a
certain publication. In such a case the missing values can be imputed based on the
year of publication feature, which gives insights in how often an author publishes
as well as the timeline of all its publications. In addition, when also considering the
distribution of the rate of publications for different age groups, missing values can
then be imputed for such a feature. For categorical variables domain knowledge is
usually required, as these are classifying labels that are specific to the publications,
thus metadata-specialists have to be interviewed for this purpose. For textual data a
set of different approaches can be taken. These include stopword removal, tokeniza-
tion, stemming/lemmatization, making all words lowercase and removing special
or redundant characters. Missing textual data is not a problem, as all publications
have at the very least a title that can be used to describe the publication.

Feature engineering

Feature engineering is a fundamental process in the machine learning pipeline and
has been deemed integral to whether a machine learning model succeeds or fails
(Zheng and Casari, 2018; Domingos, 2012). It is used to derive new features from
already existing raw data, using domain or empirical knowledge. These new fea-
tures then either 1. provide additional information or insights about the raw data
that can aid the predictive modelling process or 2. make raw data compatible with
the requirements of the used machine learning algorithm (Zheng and Casari, 2018;
Domingos, 2012). As heterogeneous data is by nature already harder to use for pre-
dictive modelling, it is considerably more important to have a correct feature engi-
neering step in the machine learning pipeline (Han and Lam, 2003). A correct feature
engineering step can then alleviate some of the disparity in the information richness
and availability and thus in turn increase the accuracy of the predictions made.

Feature selection

Another important step in the machine learning pipeline is feature selection (Dash
and Liu, 1997). Feature selection is the process of selecting relevant features from a
set of features and returning these as the subset of data that can be used for further
purposes (Dash and Liu, 1997; James et al., 2014). In essence this means that fea-
ture selection deals with omitting redundant or irrelevant features for the input of

Chapter 2. Theoretical background and related work 18

a machine learning model, and thus removing data that can negatively impact the
machine learning model while limiting the loss of valuable information (Berming-
ham et al., 2015). In a general sense this has multiple benefits: avoid erroneous
predictions based on noisy data, shorter training times for learning, reinforce proper
generalization, avert the curse of dimensionality and simplify the model for bet-
ter interpretability (James et al., 2014; Bermingham et al., 2015). Considering these
benefits this can already compensate for some of the overall problems with heteroge-
neous data. Additionally, this is also beneficial for reducing heterogeneity as overall
heterogeneity can be reduced by removing features that individually consist of het-
erogeneous data.

Usage of external knowledge

In line with the earlier discussed study that used automatically generated graph
embeddings (Ostendorff et al., 2019), studies have showcased the potential of using
external resources. Including external sources for gathering information can enrich
text representations and the available metadata as these sources can potentially have
useful information for use that was not available previously. Studies have empiri-
cally shown that integrating external knowledge can improve the task of text and
associated metadata classification (Wang et al., 2009; Zhang et al., 2019). In the cited
cases this was done by considering the relations between entities as well as incorpo-
rating knowledge graphs. Examples include using external knowledge bases such as
Wikipedia and Wikidata that have considerable amount of structured data available
that provide additional information. This notion is substantiated by the fact that
Wikipedia and Wikidata have so-called linked data (all entities are mapped with
relationships) which has shown to be useful in other domains for the purpose of re-
search, as well (Farda Sarbas and Müller-Birn, 2019). In addition to the mentioned
general databases, there are several external databases that are specifically catered
to bibliographical information and information about certain authors. In this thesis
we will explore both types of external sources and the potential information gain for
the goal of predictive modelling.

2.3.2 Class imbalance: using Similarity Learning

The result of having a multi-class classification problem with an underlying class
imbalance is iconic to the author attribution task (Qian et al., 2015; Castro et al., 2015).
This is due to the fact that in prototypical author classification tasks there can be up
to millions of classes. Every class represents an author, that has a varying number of
publications substantiating the class label. This can lead to a significant problem, as
it can lead to different types of predictive machine learning models perform worse
on classes that are underrepresented in the data (Qian et al., 2015). This imbalance is
amplified by the notion that the number of classes is much larger than in other class
imbalance (binary or multi-class) machine learning tasks.

Therefore, an approach that reverses the training architecture can be used to alle-
viate this problem, which is also known as similarity learning. Instead of classifying
the publications with author labels, the process is reversed and for every publication
similarity with potential authors is calculated. For the disambiguation task in this
thesis the computational complexity can also be reduced as the name of the author is
given with publication data. Similarity learning is driven on the notion that authors
are distinctive in their biographical, topical and stylistic characteristics, as well as

Chapter 2. Theoretical background and related work 19

other metadata associated with their publications. In essence this is in line with the
traditional author classification task, however this differs in two aspects:

1. Similarity learning considers all possible authors for a publication equally based
on their characteristics, independent of the number of books they have pub-
lished. (Qian et al., 2015; Castro et al., 2015)

2. Using explicit author information is made possible.

Thus, in this variation the earlier mentioned contextual author information in
the form of author embeddings can be used. This can not be done when using pub-
lication metadata for a direct author classification task, as feeding the model direct
information about an author within data that represents the publication is a form
of deceiving the model. This is based on the notion that in a real-life setting, author
information can not directly be linked to a publication as the author is still unknown.

A possible approach for implementing similarity learning is transforming the
publication data into a similarity space (Qian et al., 2015). This means that embed-
dings are made from a set of publications resembling previous works of an author
and compared with the information of the to-be-attributed-publication. The previ-
ous works are received from the training set, while the comparison is made with an
unseen publication of the test set. The distance is calculated between the embed-
dings representing the author and the publication. These set of distances represent
similarity scores that can be calculated using a metric such as cosine similarity or the
euclidean distance. After obtaining a set of similarity scores, the similarity between
the author and the publication should be a relationship of the notion that more fea-
tures having a higher similarity should lead to an overall higher likelihood that the
author wrote the publication. This type of learning has showed good results in dif-
ferent studies, ranging from social media texts inputs, emails, unknown documents
and publications (Chen et al., 2011; Boenninghoff et al., 2019; Arcia et al., 2017; Cas-
tro Castro et al., 2015; Chen et al., 2009).

In fact, contextual information of the author is available for a portion of the au-
thors (which will be discussed in Chapter 3). As mentioned in the introduction,
addition of such information is still a topic that lacks research. Thus, in addition
to the publication data embedded into a similarity space this type of information is
additionally used. For the available biographical information about an author the
semantic distance can be calculated with the content of the book, while age and role
can intrinsically be telling features by considering their specific values for different
publications.

20

Chapter 3

Data

In this section we will explore and discuss the data, which is available at the KB. The
data can be accessed by all researchers of the KB, but external researchers could po-
tentially also get access to the data on request 1. The data can primarily be divided
into two types of data: contextual metadata and descriptive textual data related to
the content of the publication. The metadata includes various types of information,
such as year of publication, language of publication, original language, name of pub-
lisher(s), CBK genre of book and CBK theme of book. CBK 2 is a national catalogue
used by various libraries aimed at describing children’s literature, for example by
assigning categorical genre and theme labels to a publication. Furthermore, there is
also the NUGI and NUR genre and rubric descriptive features, which fulfil a sim-
ilar purpose but tend to have more general descriptions as they are not catered to
children’s literature. In addition, we also have the available descriptive textual data,
which consists of the title of the book, the summary of the book and additional notes
about the publication. Examples for these types of data entry points can be found in
Figure 3.1, 3.2 and 3.3. The data examples give insight in the heterogeneous nature
of the data; some features are sparse in information availability while others are rich
depending on the publication.

FIGURE 3.1: Data examples for content related features (title and ab-
stract).

In addition to the publication data, there is also author information available as
mentioned in the introduction. This information includes biographical notes about
the author, role of the author (for a certain publication) and birth year. Data entry
points for these types of data can be found in Figure 3.4. Figure 3.4 showcases that
autobiographical notes can contain some potentially useful information about what
the author does in their life (i.e. profession or hobby’s). However, we can also ob-
serve that some authors have low quality input for this feature, such as intractable
codes that do not contain useful information. In addition, we can see some of the

1https://www.kb.nl/bronnen-zoekwijzers/dataservices-en-apis
2https://www.kb.nl/bronnen-zoekwijzers/kb-collecties/moderne-gedrukte-werken-vanaf-

1801/kinderboeken/over-het-centraal-bestand-kinderboeken

Chapter 3. Data 21

FIGURE 3.2: Data examples for language and publishing related fea-
tures.

FIGURE 3.3: Data examples for genre and themes classifying features.

heterogeneous data patterns in accordance with the publication data here as well
when observing the missing values.

FIGURE 3.4: Data examples for author information.

The heterogeneity can be mostly explained by the rates of distinct values, per-
centage of value that appears the most for a feature as well as missing values. On
average a publication has a rate of 44% missing data, while for individual features
the missing rate values can be much higher. The missing rates for each different
feature will be discussed in Section 4.2.1, where we also discuss our attempts at al-
leviating the high rates of missing values. The rates of distinct values as well as
rates of values that appear the most for a feature can be seen in Table 3.1 for a set of
varying features. Some features have many distinct values (for example, publisher
and CBK themes) which can lead to low quality information and bad generalizabil-
ity for a machine learning model. Other features have dominating values with a
high frequency (such as the language-oriented features or role of the author) which
can make it difficult to extract useful distinctions between publications. Combin-
ing these problematic elements with the high missing value rates leads to a typical
heterogeneous data input that can negatively impact predictive performance of a
machine learning model.

Furthermore, authors linked to the publications can be either primary authors or
secondary authors. Primary authors are the artists or writers that made the book and
wrote the story, while secondary authors can for example be editors or translators
that have a more peripheral role. For scoping purposes, this thesis will focus on
primary authors. This is also due to the notion that the primary authors are the main

Chapter 3. Data 22

TABLE 3.1: Data descriptions of various metadata features.

Feature Distinct values
Most appearing value
(Missing values not included)
Value Frequency

Language of publication 243 nl 92%
Original language 250 nl 63%
Country of publication 196 nl 78%
Year of publication 355 2016 2%
Publisher 27066 Zwijsen (Tilburg) 2%
Number of authors 8 (Range: 1-8) 2 47%
CBK Genres 696 Picture book 14%
CBK Themes 5856 Animals 3%
NUGI genre 274 Children’s literature 12%
NUR rubric 345 Picture book <6 years 12%
Role author 326 illustrator 42%

case for automating authorship attribution as they tend to encapsulate the bigger
part of cases regarding linking authors with ambiguous names to publications.

There are 38259 primary authors linked to all children’s books, of which 19559
have at least 2 publications. A number that gives a strong indication of the previ-
ously mentioned prototypical class imbalance in author classification tasks. Within
this wide selection of different authors, there are significant differences in the num-
ber of publications per author. In the context of machine learning this means that
some classes will only have a few instances, while other classes will have more in-
stances to learn upon. In Figure 3.5 we showcase this class imbalance, as well as the
total instance sizes for different publication counts by combining all primary authors
(labels) with the same number of publications.

FIGURE 3.5: LEFT: range of number of publications for all authors.
RIGHT: number of total records for classes (authors) with the same

number of instances (publications).

We can observe that the class imbalance problem leads to an uniquely skewed
dataset. Authors with many publications naturally have the most instances to learn
from, while authors with only a few publications will in turn only have a few in-
stances. Figure 3.5 (left graph) makes this visually apparent by showcasing the range
of number of books published by different authors, and thus the degree of difference
found in authors and their number of publications. At the same time, the classes

Chapter 3. Data 23

(authors) with the fewest instances (publications) encapsulate the biggest number of
records in the dataset when combined, while classes with the most instances have a
lower number of records when combined (right graph).

24

Chapter 4

Methods

This section describes the steps that define the machine learning pipeline for the dif-
ferent experiments as part of answering the research questions, as well as a descrip-
tion of the conducted case study. In accordance with Chapter 2, the main aspects
that define this pipeline can be summarized into 5 steps: (1) pre-processing hetero-
geneous data and feature selection, (2) feature engineering, (3) using different data
and text representations, (4) converting the publication-author space into the simi-
larity space and (5) deciding upon fitting machine learning models for the different
experiments conducted. Before getting into the technical and data-driven consid-
erations, the preparation for mimicking the human thought process (by integrating
domain knowledge from metadata specialists) and understanding the available data
will be elaborated upon.

4.1 Interviewing cataloguers and metadata specialists

Understanding the expert thought process in linking hard-to-identify publications
accurately to an author can be useful for several purposes, such as substantiating
extra features to be made as well as using the available data in correct ways as in-
put for machine learning. For the purpose of getting insights in the expert thought
process in linking authors with ambiguous names to publications, as well as getting
insights in the available metadata for feature engineering purposes, interviews were
conducted with three different metadata specialists and cataloguers at the KB. In ad-
dition, a few difficult example cases were requested to be showcased for observation.
During these observations the experts were asked to adhere to the thinking aloud
protocol, so insights in what they are thinking were also obtained. These interviews
and observations were taken independently on separate moments to showcase (po-
tential) differences between work approaches as well as not getting biased answers.
We supplement the case study by holding a survey to seek how a bigger number
of metadata specialists, cataloguers and bibliographical researchers perceive the im-
portance of the different types of information available. The results of the survey
are then compared to the results of the machine learning models to seek if there are
significant differences in attribution of authorship.

4.1.1 Interviews

The specialists were asked a set of questions regarding the available data features
and how they perceive the importance of these in relation to linking authors to pub-
lications. Based on the answers we can categorize the importance of the different
features on three levels: 1. important, 2. somewhat important and 3 not impor-
tant. The features that are categorized on the first level are features that all special-
ists deemed important and were reliable features that the specialists could fall back

Chapter 4. Methods 25

TABLE 4.1: Perceived importance of different features for expert au-
thorship attribution

Importance Feature

Important
Content (title, abstract), genre, themes, publisher,
background information about the author

Somewhat important
Publication language (in combination with) original
language, country of publication, year of publication,
age of author, role author

Not important
No. of pages, thickness of book,
unique identifiers pertaining to the author

on when facing ambiguous authors for selection. The second level introduces data
features that can be important depending on context, but were either (1) not unan-
imously deemed important by all three experts or (2) deemed as lesser important
than the features in the first level. Furthermore, the third level consists of features
that are deemed not important, these are usually features that are not considered
when selecting an author.

The experts clarified that in most cases authors are easily distinguishable by look-
ing at the combination of first name and last name, however the purposes of machine
learning implementation for detecting authors is meant for the cases where author-
ship attribution is not always clear. In those cases, the experts adhere to several
stages for trying to identify which author should be attributed to the publication. A
pattern can be found that divides this process in 4 stages, which are in chronological
order as following:

1. Try to find the author with data available internally

2. Use external sources or software to get more information about the author

3. Elevate the publication to the data acquisition team, which will contact the
publisher

4. Make a new record for the ambiguous author, possibly being a duplicate au-
thor record

At the first stage, the experts try to find the correct author for the publication
using the aforementioned features as mentioned in Table 4.1. When this is unsuc-
cessful, the process elevates to the second stage which introduces using external
sources or software for finding the correct author.

These sources are primarily Wikipedia and LinkedIn, which potentially house
additional useful information about the author, including a list of their publications.
External software is also used, an example for this is Delpher. Delpher is an appli-
cation that houses over hundreds of millions of Dutch newspapers, books, maga-
zines and so forth. In some of these texts additional information can be found about
a certain publication or authors, for example, publications from earlier centuries
were systematically announced in newspapers by the publishers. An expert could
then read such an announcement which could also include biographical informa-
tion about the related author. This kind of newfound information can potentially
give clear directions to the correct author for the publication.

When both stage 1 and stage 2 fail and the expert can not derive the correct
author-publication match, the publication is sent to the data acquisition team. This

Chapter 4. Methods 26

team will then contact the publisher of the book and request further information. In
some cases the publisher will co-operate, but in the majority of the cases the pub-
lisher does not cooperate. The main reasons for this being that the publisher simply
does not respond to requests made by experts, or, does not allocate resources or time
for searching for additional information about the author.

After this, the only option left is to make a new record for the author, even though
it could be a duplicate record. This could lead to data redundancy, but according to
the experts it is better than the alternative of incorrectly attributing a publication to
an author. Due to the fact that the latter option will lead to erroneous and polluted
data. The experts made it clear that the data redundancy could also be resolved at at
later time when a cataloguer discovers this through information obtained at a later
time or by chance.

The expert perceived importance to the available data as well as the work pro-
tocol to approaching the problem of ambiguous names for authors gives insights
that can be used for predictive modelling. However, observations were also made
and these showcase favouritism between experts for using different data as well as
differences in work approaches.

4.1.2 Observing difficult cases

In conjunction to the conducted interviews, we observe the specialists selecting au-
thors for publications in multiple difficult cases for more in depth insights. These
cases involved authors with the same first name as well as the same surname, with
no additional clues to entice to which unique author identifier they belong. A run-
down of the observations made will be done in this section, while also noting the
key differences between the experts.

Expert 1 mainly firstly observed the author background information that ap-
pears after the name of the author, and accordingly filtered out authors that seem
highly unlikely. Furthermore, additional inspection is done by expert 1 by observ-
ing whether the author in question had a potential baptismal name that differed
between two data entries. If looking at the specifics of different authors is not con-
clusive for the task, then the expert starts spectating and comparing titles and genres
of the books of different authors in relation to the information found in the to-be-
attributed publication. This is done to find a topical or thematic similarity between
the two. Somewhere in this process the expert found a suitable author to the publi-
cation usually, if not then the expert would revolt to using external sources (in this
case LinkedIn) to try to get more information about the author and try to link a
publication to an author through such means.

Expert 2 had a different approach, systematically prioritizing titles of books when
comparing publications. In all cases this gave a good indication whether the to-
be-attributed publication fitted the authors that were being compared. This could
indicate that prioritization of the textual data consisting out of a sentence or para-
graphs can be useful for implementation of the machine learning model. As this
type of data is textual and conveys a semantic meaning, this means that the inclu-
sion of Text Mining or Natural Language Processing can improve the performance
for predictive modelling. With this approach, expert 2 clicked through more author
records and spent less time spectating additional author information in comparison
with expert 1. Expert 2 also placed a higher priority at considering the publisher of
the corresponding book. In comparison with expert 1 age was equally considered,
and similarly external sources were used if no author was found.

Chapter 4. Methods 27

Expert 3 considered all data features based on context and shifted in prioritiza-
tion of data features. In one case a higher priority was allocated to title and content,
while in an other case priority was given to publisher but also language and possible
translations. This can be indicative of shifting feature weights in a machine learning
model, as obviously metadata can differ from publication to publication in terms of
how useful the conveyed information is. Furthermore, expert 3 had more experience
than expert 1 and 2 and this showed when observing the work approach as expert 3
also had a feeling for ’what felt right’ in attributing books to authors. Furthermore,
expert 3 mainly focuses on children book’s and older publications for which they
used Delpher significantly if stage 1 failed to attribute an author to a publication.

Expert 1, 2 and 3 all showcased authors that could be problematic for computa-
tional prediction. These authors can be categorized into three categories. (1) Authors
that completely shifted the genres and topics of their publications during their writ-
ing career, for example, going from writing about music to writing horror stories. (2)
Authors that have a completely different background in correspondence to the type
of books they write, for example, an author that is an accountant but writes books
for children. This could be indicative that the biographical notes that describe an
author can be misdirecting and perhaps could reduce the robustness of an machine
learning model if used as an input feature. (3) Authors that have a duplicate records
in the database, this can be confusing as they are the same person but implied to be
different persons due to either human error or as a result of resorting to stage 4 of
the aforementioned work protocol.

In conclusion, even though the experts all follow the same protocol as described
in section 3.1.1 and share a big portion of the way they approach the problem, there
are differences. These differences can thus be mainly found in prioritization of data,
approaches to attribution of publication to book, experience and efficiency of attri-
bution. These difference indicate that features matter depending on context and that
there are multiple ways for attributing an author to a publication when facing an am-
biguous name. Therefore these aspects are taking in consideration, and substantiate
a more experimental nature when implementing a machine learning model.

4.1.3 Survey

To supplement the case study of conducted interviews and observations, we also
hold a survey for a bigger number of experts 1. For this purpose we asked 18 bib-
liographical researchers, cataloguers and metadata specialists. Due to the bigger
number of respondents for the survey we can have more elaborate understanding
regarding if different types of people that work with bibliographical data on a day-
to-day basis have the same perception of the available information. The survey con-
sists out of two multiple choice questions for the respondents. The first question
focuses on features they deem to be the most important for attributing an author to
a publication. The second question focuses on features they would deem to be the
least important (i.e. would not use for basing predictions). To reduce the possibility
of noise in the results, we limit the total number of possible selections; the respon-
dents can only select a maximum of three features for both questions. Two experts
were also asked to review the survey beforehand for validity and reliability, as well
as to review whether the questions and answers are clear and well understandable.

Ultimately, the survey provides insights in expert-attributed importance to a
wide set of available (metadata) features for the purpose of predicting a publica-
tion’s author. When inspecting the answers we find that we can find clear patterns,

1https://forms.gle/1hvYMGvivnyLXpss6

Chapter 4. Methods 28

which will be discussed in Chapter 5 and 6. We also find that the answers to question
1 and question 2 are in correlation to each other, as features that have the most votes
in question 1 are not voted for in question 2 and vice versa. Thus, we can represent
the results into a singular pie chart in Chapter 5.

4.2 Supplementing and pre-processing heterogeneous data

The available data as discussed in Chapter 3 comes in various ways with many fea-
tures having significant rates of missing values, which can transcend up to missing
value rates of 90%. Aside from missing values, the database also contains data with
human error, spelling mistakes and ambiguous input. To alleviate some of these
problems, this section will elaborate upon how we pre-process different types of
data with their associated problems for a more useful data input. In supplementa-
tion, rationale behind the consequential feature selection is also discussed. Finally,
we elaborate upon the methods for integrating linked data in an attempt to make
the data more elaborate and refined.

4.2.1 Considering missing values

Many features contain a higher number of missing values than usual due to the
heterogeneous nature of the data. The percentages of missing values for different
features can be found in Figure 4.1. Only a few features have no or a negligible
percentage (< 0.1%) of missing values, these are the language, year and country of
publishing of the book as well as the title of the publication and the publisher. In
Figure 4.1 these have been labeled as ’Others*’. The other features vary in missing
value percentages, from reasonable ranges up to high percentages possibly indicat-
ing unusable features.

FIGURE 4.1: Percentages of missing values for each feature

Publication metadata

The NUGI genre and NUR rubric features contain respectively approximately 87%
and 79% missing data, where missing data values could theoretically be any genre

Chapter 4. Methods 29

or rubric depending on the publication’s content. In addition it is also impossible
to define a heuristic that can impute these kinds of values. However, we will con-
sider these features for experimental use, to seek whether the low percentage of
non-missing values can still have (any) positive impact on the model. However, if
this is not the case then the features can be safely omitted. This is then done as the
percentage of missing values is deemed too high and ultimately these features try
to convey the same information as the more dense CBK genre and CBK theme fea-
tures. We inspect whether filled values in either of the NUGI or NUR features have a
correlation with missing values found in the CBK features, however, a potential cor-
relation can not be found. The ISBN 2 feature also has a considerable missing value
rate, but this feature can a priori be deemed as not usable as it is a unique identifier
for publications.

After consultation with domain experts, we find that the CBK theme feature ap-
pears to be a further sub-specification of the CBK genre feature. The CBK theme
feature is thus usually added in cases of ambiguous or shallow CBK genre data en-
try points. This is done to describe the book’s subject more in depth. This also
explains the high rates of missing values, as this feature can be seen as optional.
Thus for the CBK theme feature it would not make sense to impute missing values,
as the CBK genre can be considered the primary feature here for describing a book.
Instead, the supportive CBK theme feature will be modeled as such for the machine
learning model. When considering the primary feature, the CBK genre, we find a
relatively small percentage of missing values and thus we impute these values with
a ’unknown’ label.

When considering the language-related metadata pertaining to the publication, a
distinguishment can be made between the original language of the publication and
the language after publishing. When these two fields differ in value this indicates
that the publication is a translation of an original work. Usually, the language of
the publication after publishing is Dutch while the original language can be any
language with a majority being Dutch (as could be seen in Chapter 3). While all
languages at publication are filled, the field that indicates the original language of
a publication can be empty, which can also be seen in Figure 4.1. When this is the
case, this (usually) indicates that the original language is the same as the publication
language (thus not a translation). Therefore, original language values that are NULL
where set to be equal to the publication language.

Lastly, regarding the publication data inputs we have the abstract feature which
gives a summary about the publication. Figure 4.1 showcases a relatively high miss-
ing value rate of 65%. This feature is found in different datasets and is either in the
form of a direct summary or an annotation about the book. Since this information is
thematically alike with the title, and both represent the content, a new feature was
created that concatenates title + abstract and additional annotations describing the
content. Due to the fact that every book has a title at the very least, the missing value
problem is mitigated by concatenating these different features. In turn this results
into the notion that books that have more information available (content-wise) will
have more input data, while publications with only a title can be compared with
more confidence with those types of publications as the newly made content feature
makes it possible to have more intricate comparisons.

2https://www.isbn.nl/

Chapter 4. Methods 30

Author metadata

Outside of the publication specific data, there is also the information that pertains to
the author that can be used for the second machine learning model that is based on
similarity learning. The same trends are found here as well as with the publication
data, as we can observe in Figure 4.1. It becomes apparent that similar high rates of
missing rate values can be found for age, role and author information (i.e. notes or
an autobiography that is available.).

The age at publication feature is derived using the birth year and year of publi-
cation features, however this results into a feature with non-computables ages for
72% of the authors. Upon further inspection in the previously mentioned NTA (the
official author database) birth years or year of publications that were only partially
known, such as ’197X’ or ’18XX’, were also used. These were incorporated into the
computation of age by replacing the X with a 5. This is considered a sufficient re-
placement for X as it is in the middle of the possible 0-9 range of the placeholder and
therefore is the least deviance inducing overall. Afterwards, the distribution of the
values was considered as can be found in Figure 4.2. While the values have a nor-
mal distribution, there is also a significant number of outliers (mostly posthumous
releases or incorrect inputs). Considering these trends in the data, the remaining
missing values are imputed with the median of the training set.

FIGURE 4.2: Distribution of ages at publication

Regarding the role feature, we can observe in Figure 4.1 that this is another fea-
ture with a high rate of missing values (65%). As this feature is solely based on
domain knowledge, we consulted experts and consequentially a heuristic was made
in place for value imputation. The rules for this heuristic can be found in Table 4.2.

TABLE 4.2: Heuristic for imputing role-based values

Kind Type of book Rule
Primary author Picture book Impute with the ’creator’ label

Text book Impute with the ’writer’ label
Secondary author All Role can take on any value.

Chapter 4. Methods 31

Table 4.2 showcases that authors can be classified as either primary or secondary
authors. If the author is an primary author (almost always the person who wrote/created
the story of the book) a distinguishment is made whether the book is a picture book
or a text book (which can be derived from the CBK genre feature). If it is the former,
missing values are imputed with a ’creator’ label, which is essentially a superset of
the ’writer’ and ’artist’ labels as they are both possibilities. When it is the latter, the
primary author of the book will always be a writer, and thus this label gets imputed
in those cases. For secondary authors, the number of possibilities are too large as
practically any label can fit here. Therefore these are imputed with an ’unknown’
label.

The final feature is the author information feature, which encapsulates informa-
tion related to their background. This is for some authors available but 52% of the
authors do not have such information. Imputation is not possible here as biograph-
ical note(s) about authors are unique and thus must be compared through semantic
analysis instead of representing it as a category.

4.2.2 Clustering publishers, CBK genres and themes

The publisher feature has practically no missing values, however the input values
can be of low quality or badly interpretable for a machine learning model. This is
mainly due to (1) spelling mistakes, (2) typo’s, (3) variations in names of the same
publisher and (4) publishers that moved to a different location in the past centuries.
A few examples of these can be found in table 4.3. Table 4.3 indicates the sever-
ity of this problem by illustrating some of the found errors/variations for one of
the most popular publishers, Leopold. A few examples are given, from the in total
70+ different variations of the same input value. Using this data as raw input with-
out processing by means of clustering, will decrease the performance of the model
significantly. This is due to the fact that values with different spellings but in fact
represent the same publisher can not be interpreted as such. Therefore, processing
was done to cluster (most of) the variations of a publisher to be represented by an
umbrella and correct value. In this case, this value is the value that appears the most
frequently for a publisher in the database. Thus in the case of Leopold, this will be
in fact, only the word ’Leopold’ without anything else. This was done through a
pipeline of processing consisting of a few steps.

TABLE 4.3: Input errors or ambiguity in publisher feature

Type Examples
Publisher, correct value input (by frequency) Leopold

Spelling mistakes, typo’s
Leopold Uitgevereij
Lepold, Loepold

Different locations
[Amsterdam] : Leopold
[Den Haag] : Leopold

Variations in name
of the same publisher

H.P. Leopold
H.P. Leopolds Uitgeversmij
H.P. Leopold Uitgeversmaatschappij
H.P. Leopold’s Uitg. Mij
Leopold 9+
Leopold N.V.
And... 60 more variations

Chapter 4. Methods 32

First off, the publisher input was processed using regex expressions and some
textual processing. The regex expressions shortened the string to remove the lo-
cation part in the input value and return the string that appears after the location
string. This is done due to the finding that publishers with the same name, but in
different locations, are approximately always publishers that moved their headquar-
ters. The alternative could be that publishers have the same name but are situated
in different cities, however, practically this is only the case in a very small subset.
Due to these findings location was removed for better comparisons. After this, the
leftover string was processed by making the entire string entirely lowercase and
by removing all special characters. The resulting string was then compared to a
list of 30+ throwaway words that appear frequently, but have very low meaning.
Some examples of those types of throwaway words include ’Uitgeverij’ (publisher),
’N.V.’ (nameless partnership) and ’Drukkerij’ (printer). These types of words were
removed, yielding a pre-processed publisher string with more similar representa-
tions in comparison to other values of the same publisher.

These publishers are then compared to each other using an improved version 3

of the Gestalt Pattern Matching algorithm (Ratcliff and Metzener, 1988). This version
integrates the official algorithm which searches for the longest contiguous matching
subsequences, splits on these and recursively searches for longest contiguous sub-
sequences in the leftovers until resulting strings are smaller than a specified value.
The larger the found cumulative matching subsequences are (offset by the total num-
ber of characters), the bigger the similarity score will be. However, this version ex-
tends the original version by including the notion of ’junk’ elements, which usually
tend to be (sequences of) characters that are not interesting when comparing strings
for matching sequences. These junk elements are then omitted from having a role
in determining similarity between strings. This way of determining similarity be-
tween strings outperforms the alternative approach of using edit-based similarity
algorithms such as the Levenshtein and Hamming distance algorithms. The latter
algorithms will yield higher scores on variations of publisher names that have ad-
ditional (unnecessary) words, indicating that these publishers are not similar while
in reality they are the same. Ultimately after trial-and-error, a threshold of a simi-
larity score of 0.88 was ultimately chosen for clustering publishers together. This is
a relatively high number as strict clustering is preferred in this case (i.e. we want
to prevent erroneous clustering). Upon visual inspection this performed reasonable,
with only a few cases of underclustering being detected which were then manually
clustered.

In accordance with the described method for clustering publishers, the CBK gen-
res and themes values were also clustered. This was done as the same types of erro-
neous data input could be found in the latter two mentioned features. However, as
these features have more bland inputs, no regex expressions or throwaway words
were defined here as it would not add improvement in performance.

Ultimately clustering increased the quality of the data and reduced the number
of distinct values significantly for all features as can be seen in Table 4.4. Publishers
especially had a notable reduction of 58.2%, with CBK genres having a substantial
reduction of 36.2% and CBK themes having a relative smaller reduction, but that
could be explained by the high percentage of missing values (see Figure 4.1) that can
be found in this feature.

3Difflib SequenceMatcher: https://docs.python.org/3/library/difflib.htmlmodule-difflib

Chapter 4. Methods 33

TABLE 4.4: Distinct number of values before and after clustering

Feature Before clustering After clustering Reduction
Publisher 27066 11314 58.2%
CBK Genre 696 444 36.2%
CBK Theme 5856 5084 13.2%

4.2.3 Preprocessing of text

For the content-based features of title, abstract and annotations that describe the
book (which have been concatenated as described in Section 3.2.1), text has to be
pre-processed differently. This is especially important in cases where corpora for
pre-training are not an option (such as when using TFIDF textual representations)
as syntactic meaning has to be derived, based on a corpus of the own data. Some of
these techniques used for TFIDF will still apply to Word2Vec, while BERT requires
a completely separate type of textual preprocessing. These various methods will be
discussed in this section.

TDIDF and Word2Vec

To get useful representations of text for TFIDF representations, text is gone through
a preprocessing pipeline. The diagram of this pipeline can be found in Figure 4.4.
Figure 4.4 showcases that the text in its raw form goes through six different steps that
essentially then give a cleaned text output. The first step is the so-called unidecode
4 step, which is a Python implementation that represents unicode textual data into
ASCII for better universal representation of words in the to-be-made corpus. This
is useful for words that include characters that are only used limitedly or words
with umlauts, accents on characters and so forth. Afterwards, the entire sequence
of text is converted to lowercase so words are not seen as different from each other
based on the usage of capital letters. The third step tokenizes the input into a list of
tokens and removes white spaces. This step is necessary for creating a Bag of Words
corpus later on (from which a TFIDF representation can be created). These tokens are
then inspected one by one for stopwords as well as non-alphanumerical characters
(which are usually irrelevant special characters). The list of stopwords 5 used is
compared with other lists and in comparison is the most complete and correct list.
Removal of non-telling words or characters such as stopwords and special characters
is essential as otherwise they will clutter up a corpus with tokens that do not provide
meaningful comparison between different text inputs.

Finally, when the text has been cleaned and converted the final step of stemming
is applied. This step actively changes the structure of the words with the means
to group words that are the same but are in a different form or tense. For example,
when you have the dutch verb ’werken’ (work), you can have different forms such as
’werk’, ’werkt’, ’gewerkt’, ’werkten’ and so forth. Proper stemming algorithms will
recognize that all these words convey the same meaning and reduce them to their
base form of ’werk’. Several stemming algorithms are considered for this purpose
but ultimately the Kraaij-Pohlmann (KP) stemmer 6 is chosen as it produces the most
consistent results (Kraaij and Pohlmann, 1996). Other popular stemmers such as the

4https://pypi.org/project/Unidecode/
5https://countwordsfree.com/stopwords/dutch/txt
6http://snowball.tartarus.org/algorithms/kraaij_pohlmann/stemmer.html

Chapter 4. Methods 34

FIGURE 4.3: The pre-processing pipeline for textual data

NLTK-implemented Dutch Snowball stemmer 7 contain a multitude of unresolved
issues that become apparent when used, leading to lower quality stems (Boer, 2019).
Older stemmers (such as the original Porter stemmer) also tend to fail on a larger
percentage of words (Porter, 2001). The KP stemmer uses a more complex algorithm
than the alternative approaches (Gaustad, 2004), which becomes clear when taking
an in-depth look into the source code. This leads to better results as the KP stemmer
(1) aggrandizes a number of common derivational morphemes, (2) has more robust
rules for plural forms and other easily detectable suffixes in the Dutch language, (3)
anticipates diminutive words and (4) has spelling rules that fix some of the other
stemmers’ failures in regards to dealing with double consonants at the end of base
forms.

Ultimately, after applying these six steps the text is processed and returns a clean
set of tokens that can build a BoW corpus with richer information. For the Word2Vec
approach four of the six steps are used for pre-processing, these include converting
text to lowercase, tokenizing and removal of information-sparse words (stopwords)
and characters. Unidecode and stemming are both not applied as they modify the
structure of words, which is not necessary considering the Word2Vec implemen-
tation is based on word embeddings that are the result of a pre-trained model on
millions of articles. Thus, this means that words are used in contexts which makes it
possible to derive their semantic meaning, contrary to TFIDF. Applying techniques
such as stemming can even decrease performance as it can create words that do not
appear in the pre-trained corpus, making it impossible to compare between differ-
ent text inputs. This is further discussed in Section 4.5, where a look is taken at how
Word2Vec embeddings are derived and how accordingly different publications are
semantically compared.

BERT

BERT has its own set of rules for text input, and thus the texts that represent the
content of the book have to accordingly be processed. This pre-processing structure
can be found in Figure 4.4. A sentence is usually tokenized in similar ways as with
TFIDF, but with dynamic word embeddings that use language models such as BERT,

7https://www.nltk.org/_modules/nltk/stem/snowball.html

Chapter 4. Methods 35

a more inclusive tokenization also known as wordpiece tokenization is applied. This
can be seen in Figure 4.4 with the word ’rumination’ that is tokenized into rum and
##ination. Effectively this increases the model’s performance to deal with language-
specific Out-Of-Vocabulary (OOV) words, which are essentially words that are rarer
or do not appear in the corpus. Through this way a more frequent subword will
appear during training, leading to the model’s recognition of these rarer words and
learn about its nature. Furthermore, in line with Figure 2.5 in Chapter 2 explaining
BERT’s NSP mechanic, a [CLS] and a [SEP] tag are added. Finally, the tokens are
substituted with their IDs, which translates the text now as a valid input for the
BERT model.

FIGURE 4.4: BERT’s own pre-processing structure

4.2.4 Integration of linked data

To enrich the information density of the available data and add supplementing infor-
mation, a final option to consider is the usage of external linked data, as discussed
in Section 2.3.1 Usage of external knowledge. For this purpose several databases are
considered: the previously mentioned Nederlandse Thesaurus van Auteursnamen
(NTA), Wikidata 8, Digitale Bibliotheek voor de Nederlandse Letteren (DBNL) 9 and
Worldcat 10. The NTA houses (practically) all Dutch authors that have one or more
publications as well as metadata describing the author. In a somewhat similar na-
ture, DBNL and Worldcat are digital libraries that house information about Dutch
(DBNL) and worldwide (Worldcat) publications, articles and their associated au-
thors. Lastly, Wikidata is a general knowledge base that has structured data about
any subject or concept found in the Wikimedia 11 cluster of knowledge bases and en-
cyclopedias. The more general nature of Wikidata can be a benefit, as Section 2.3.1

8https://www.wikidata.org/wiki/Wikidata:MainPage
9https://www.dbnl.org/

10https://www.worldcat.org/identities/
11https://commons.wikimedia.org/wiki/MainPage

Chapter 4. Methods 36

Usage of external knowledge section showed great potential for integrating Wikidata.
The different databases were observed and can provide some useful information in
addition to the already existing heterogeneous data. Table 4.5 showcases this type
of information, while also showcasing the percentages of authors in our dataset that
have a record available in the different libraries/databases.

TABLE 4.5: Various statistics regarding the different sources for inte-
gration of linked data

Authors with a record Available information of interest PPN
DBNL 7% Birthyear, gender, author notes No
NTA 100%* Birthyear, autobiography, role Yes
Wikidata 18% Birthyear, gender, occupation Yes
Worldcat 87% Birthyear, publication statistics Yes

Accessibility to NTA data is provided by the KB, while Wikidata, DBNL and
Worldcat are accessed through an API and data is consequentially scraped with self
made scripts and saved locally. Links to Worldcat and Wikidata (via Wikipedia)
were automatically generated through the universally used VIAF identifiers 12.

When using the data it becomes apparent that 3 out of 4 sources do not supple-
ment information sufficiently. DBNL and Wikidata have insufficient amounts of in-
formation available for enrichment. Even within the considerably low percentage of
authors that have a record in these knowledge bases (7% and 18% respectively), the
vast majority of these authors do not have the typical heterogeneous data problems
in the children’s literature publication database or in the GGC 13. This is mainly due
to the fact that more known authors, and thus associated with more information-
rich data, are the authors that tend to have an external record. Furthermore, DBNL
does not have a PPN (unique author identifier) yet for linkage with authors in the
database nor with the NTA, which makes it infeasible to use this type of data either
way. On a similar note, while Worldcat tends to have a publication record for a sig-
nificant percentage of authors, the quality of the information resembles the original
database. Many of the heterogeneity problems can be found here as well. Worldcat
provides some publication statistics as well as the birth years that can be potentially
interesting. Publication statistics are mainly basic information types such as publi-
cation timeline and list of associated titles. However, features such as the ’year of
publication’ and ’title’ feature in the original database are some of the few features
that have practically no missing values, making this type of data from Worldcat
redundant (as discussed in Section 3.2.1). Regarding birth year, the NTA has signifi-
cantly more birth years available for usage, which makes this source a preference for
integration over Worldcat. Ultimately, only the NTA provides a useful integration
of external knowledge and is therefore used. The rate for the authors with a record
in the NTA is also 100%, as this is the most complete external database in relation-
ship to the children books dataset. However, some authors in the children’s book
database do not have a PPN (mostly due to corrupt data), which technically implies
that not all records in the NTA could be linked. As the PPN is fundamental in func-
tioning as a label for segregating authors with the same name, the authors missing a
PPN were omitted from usage.

12https://www.oclc.org/nl/viaf.html
13http://support.oclc.org/ggc/richtlijnen/?id=12ln=nlsec=k-3000

Chapter 4. Methods 37

4.3 Feature Engineering

Extracting features from the available (processed) data is a fundamental step in the
machine learning pipeline. For elaborating upon the decisions that we will make
here, we will use the distinction as made in Section 2.3.1. Thus, this section will
be divided into two main parts of feature engineering: 1. engineering features that
provide (new) additional information or insights about the data (in Section 4.3.1) and
2. engineering features that make data compatible with the requirements of machine
learning models (in Section 4.3.2).

4.3.1 New features

The available data encourages to make new features as several author characteristics
can be found that are not modelled as a feature of their own. With this notion in mind
8 features were engineered:

1. number of authors

2. number of words in title

3. number of characters in title

4. length of title in ranges (categorical representation)

5. mean word length of publication title

6. median word length of publication title

7. age at publishing for every possible author (with the same name) and publica-
tion combination

8. concatenated content feature

Age and concatenated content feature

The ’age at publishing’ and ’concatenated content feature’ have been discussed in
Section 3.2.1 Considering missing values, which showcased their role in alleviating
discrepancies caused by missing information. The age at publishing feature was
constructed with implementing the simple subtraction of year of publication - birth
year. This feature was added due to the notion that age can tell how likely it is a
certain author wrote the book, or completely remove the possibility that a certain
author wrote the book. An example for the latter is when the author’s age turns out
to be negative when comparing different ages of authors for a certain publication.
As the author was not born, the publication could not have possibly been written
by them. The feature can also tell when it is less likely, i.e. the author is a teenager
or an elderly person. The distribution of age in Section 3.2.1 Figure 4.2 gives some
insight into the probabilities of writing. A machine learning model can learn upon
these probabilities and notions and integrate age for deciding how likely it is that a
certain author wrote a certain publication.

The concatenated content feature is created by combining all available text, de-
scriptive of the publication (including the ingrained stylistic components, as it is
written by the author of the publication). The rationale for this has been addressed
and is explained more in depth in Section 3.2.1 Considering missing values.

Chapter 4. Methods 38

Statistical features

Different statistical measures have been shown to successfully make distinctions be-
tween authors based on their style of writing for classification purposes (Litvinova
et al., 2016; Pervaz et al., 2015; Ostendorff et al., 2019). With this in mind, several
statistics that are directly tied to the way authors write or operate were computed
with the available data.

One of such features is the ’number of authors’ feature, which can be telling as
authors can have a preference in working alone, with a partner or multiple other
people in regards to the publication. This type of information conveys characteris-
tics of authors that the model can use for classifying purposes. The number of words
and characters in title features can also be distinctive of authors; some might have
typically short titles while others can have considerably long titles. In the same vein,
the mean and median word length in the title are calculated and saved as new fea-
tures. To illustrate the use of these types of features, we compare different (types of)
authors. For example, authors that create picture books without text have an average
title that consists of 3.8 words and 23 characters, while authors that write religious
books have an average title of 6.3 words and 40 characters. On an individual ba-
sis these differences can be found as well, when comparing authors within a genre
(such as picture books without text). For example, children‘s literature writer Ali
Mitgutsch has an average title consisting out of 6.7 words and 36 characters while
author Dieter Schubert has an average title consisting of 2.8 words and 16 charac-
ters. These statistics indicate significant difference between authors and their way
of writing. With these significant differences in mind, this shows that these values
can generate distinctive features for a machine learning model to make predictions
upon.

Finally, the ’length of title in ranges’ feature is a categorization of the differ-
ent lengths of titles, as it is not likely that an author will always write a title with
the same numbers of characters but rather in close proximity. Thus, this feature is
instead of a numerical feature, a categorical variation that might increase perfor-
mances as there is more leeway to represent an author’s writing style. In addition,
this representation is also more useful for the second machine learning model that
operates in the similarity space.

4.3.2 Representing data in machine-interpretable forms

As earlier described, the available data comes into three forms: categorical, numeri-
cal and textual data. In this section we will discuss the appropriate representations
for different types of variables. These types of representations are mainly meant for
an author classification model that operates in the publication with author as label
space.

One hot encoding

A number of the features are of categorical nature, where each publication can only
have one unique value/category assigned to. These are the following features: lan-
guage of publication, original language, country of publication, NUGI genre and
NUR rubriek. For these types of features one-hot encoding 14 is used for represent-
ing the data. One hot encoding is an approach that turns categorical features into a
one-hot numeric array. This is an array filled with two possible numerical values,

14https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

Chapter 4. Methods 39

either 0 or 1. A value of 0 indicates that this category is non-existent for this publica-
tion, while a value of 1 indicates that this publication is of this category type. This is
an essential step for machine learning models that want to use categorical variables,
as their ’label forms’ can not be interpreted well. A machine learning model will
interpret such labels, for example ’Dutch’ and ’English’ for language of publication,
as numbers that are lesser or greater than each other. This leads to faulty predictions
as these types of categorical values do not have an ordinal relationship. Using bina-
rization through means of one hot encoding fixes this problem and gives the model a
staunch idea of what to categorize the publication as. Through this way a set of new
features are created in the form of ’is_x’ where x is a distinct value. For example for
the language feature, the newly created features are named ’is_dutch’, ’is_english’
and so forth. The number of new features created this way is proportional to the
number of distinct values found within the different categorical features. For all the
named categorical features combined this yields 1308 one hot-encoded features.

Count vectorization

There are also categorical features that can assign multiple categories to a single
publication. In such cases one-hot encoding will not work as it only supports one
level per publication per category. These types of features are the CBK genre and
CBK theme features, where a publication can have up to four different categories
assigned. For these two features a different solution is used in the form of a count
vectorizer 15. In this case the principle stays the same as with one hot encoding,
however the numerical arrays consisting of 0 and 1 are now not confined anymore by
having only a singular 1 in the array for a certain publication. The count vectorizer
will ’count’ all the categories that apply to the publication and give these a value of
1 and then accordingly make a vector where the irrelevant categories get a value of
0.

Reducing dimensionality with compressed sparse row matrices

For features that have many distinct values after pre-processing, such as the pub-
lisher value or the TFIDF matrices output, the data is represented with compressed
sparse row matrices (CSR). The rationale behind this is that some of the mentioned
pre-processing techniques can yield over ten thousand columns, mostly consisting
of 0 values for the publications. Thus, representation of data as sparse matrices leads
to significantly more computational efficiency as well as memory usage, as zero val-
ues are omitted from the representation while their meaning is still (implicitly) taken
in consideration. Representing data as dense does not significantly change predic-
tive performance for the experiments conducted in this thesis, however, at the same
time does in fact significantly increase computational resources and memory usage.
This means that CSR from both perspective should get precedence for usage.

Latent semantic analysis with truncated singular value decomposition

Latent semantic analysis (LSA) is used for the title and content features, in the con-
text of TFIDF representations. LSA operates through truncated singular value de-
composition (SVD), with the goal of simulating meaning. This is a form of dimen-
sionality reduction, and in this case means that multiple, different words sharing a
similar meaning should be represented as a lower dimensional entity encapsulating

15https://scikit-learn.org/stable/modules/generated/sklearn.featureextraction.text.CountVectorizer.html

Chapter 4. Methods 40

their meaning. Truncated SVD uses matrix decomposition to essentially reduce the
overall matrix to its principal parts. This decomposition is done by splitting Matrix
M into the product of 3 separate matrices: M = U ∗ S ∗ V, with U and V being or-
thonormal matrices and S a diagonal matrix of the singular values of M. Obtaining
singular vectors and singular values as the result of this allows identification of in-
formation found as with eigendecompisition. The eigenvectors that correspond to
the largest eigenvalues can then be used to convey a substantial part of the variance
found in the original data. In a practical sense, this can lead to useful data reduc-
tion that has shown to have effective and efficient uses in machine learning (Wall,
Rechtsteiner, and Rocha, 2003). In addition, truncated SVD works well with with
the earlier discussed sparse matrices representation (unlike the non-truncated PCA
alternative which would require dense data).

The idea of applying SVD to TFIDF matrices (LSA) is somewhat similar as what
semantic word embeddings such as Word2Vec try to establish. However, these tech-
niques differ fundamentally, as LSA assumes that the semantic similarity between
words does not exist explicitly but exist through so called latent variables that can
explain how similarly different words affect passages in which they occur.

With some testing, approximately 1000 components showcase to have the best
performance for LSA. These components represent the 1000 largest singular values
and the first 1000 columns of U and V. In addition, the original TFIDF representa-
tion and scores are also kept as features to seek if there is an performance increase
between the two versions.

Standardization of numerical features

As previously discussed, the missing values problem in numerical features have
been imputed through usage of the median after considering the distributions of
the values. This yields numerical features that have no missing data and are repre-
sented by integers and floats, which theoretically can be interpreted by the model.
However, it is a better idea to standardize the data. Standardization of the data is
recommended as all the features are measured at different scales. Essentially these
intrinsic differences mean that they will not contribute equally to the model’s fit nor
the model’s learned function. This could lead to worse predictive power or bad be-
having models (Raschka, 2014). Thus to prevent this, standardization is applied for
every feature. Standardization will normalize every feature by scaling them in such
a way that they all have a mean of 0 and a standard deviation of 1, which can be
done with Equation 4.1.

z =
x− µ

σ
(4.1)

In the standardization equation, µ is the mean and σ is the standard deviation,
while x is the value for the numerical feature of publication x. The standardized
value z will then replace the original values for publication x for all the numerical
features and provide the well-adjusted input for the model.

Classifier model versus similarity model

The described steps suffice for the first classifier model, however, additional conver-
sion of all data is needed for the second model. As this model operates in a similarity
space, this space has to be created from the author and publication metadata spaces.
This will be discussed in Section 4.4, as this warrants a section of its own.

Chapter 4. Methods 41

4.4 Modelling the similarity space

A main research question of this thesis is whether using similarity learning can en-
hance predictive modelling performance for the author attribution task (as discussed
in the Introduction and Section 2.3.2). A conversion pipeline is needed as the avail-
able data is naturally in a publication and author metadata space. Essentially, this
requires three steps:

1. convert data to a form that includes the possibility of all authors with the same
name for a certain publication

2. create author embeddings based on x% of previous work (where x is the per-
centage of training data in the training-test split ratio)

3. calculate similarity between the publication metadata and author embeddings
for all features

The first step can be done by retrieving all authors with the same name as the
author of the book. All possible authors are then linked with the publication record.
The correct author gets a target value of 1, while the incorrect authors get a target
value of 0. An example of this training structure can be found in Figure 4.5. In Fig-
ure 4.5 an example of the book ’Het spookhuis’ (translates to ’haunted house’) and
its author Tromp is showcased, as well as all potential authors named Tromp. In the
author_ppn field their unique author number is displayed as well, which is key in
differentiating between authors with the same names. With this training structure,
all relevant publication metadata for that publication can be accordingly retrieved
from the database and used for similarity comparisons. In addition, the earlier men-
tioned types of author information, can now also be retrieved for all authors and
compared with the publication metadata.

FIGURE 4.5: Training structure of the data for conversion to the simi-
larity space

Proceeding with step 2 of the pipeline, embeddings are created of all authors and
stored. For this a training-test split is used (that will also be used later for training the
machine learning model) where 75% of the data is labeled as training data. All pre-
vious work in this training split of the author are retrieved and all values associated
with the authors for the different features are stored in their personal embedding.
The personal embedding then summarizes these inputs by giving a count to each
value found for a certain feature for the author.

With the creation of all embeddings and implementation of the correct training
structure, the similarities can be calculated. This is done using the cosine similarity

Chapter 4. Methods 42

algorithm, which is a measure of similarity considering the inner product space of
the two non-zero vectors. The equation for this measure can be defined as following:

cos(A, B) =
AB

‖A‖‖B‖ =
∑n

i=1 AiBi√
∑n

i=1 (Ai)2
√

∑n
i=1 (Bi)2

(4.2)

In this case the two non-zero vectors of A and B in the equation, consist out
of the author embedding with its value/term frequencies normalized for the fea-
ture (A) and the normalized values of the feature of the publication (B). The co-
sine of the angle between these two vectors is thus calculated for every possible
publication-author combination. This yields similarity values ranging from 0 to 1.
A value of 0 means no similarity at all with increasing similarity as the value in-
creases. Thus, a value of 1 means identical values. This also means that all previous
publications of a certain author have an equal impact when determining similarity.
These similarity values are calculated for every individual feature. Combining all
similarity scores for every author-publication combination for every feature creates
the similarity space. This similarity space is thus a matrix of the number of possible
publication-author combinations (based on the number of names that are identical
with the actual author of the publication) multiplied by the number of features. Ac-
cordingly, the similarity space can now be used as input for the regressor similarity
learning model.

4.4.1 Calculating similarity between content related features

Most of the features have values that can be counted or labeled that can culminate
into an embedding that represents all the according values for an author by sum-
ming the values for each occurring label, as well as their interrelationship. This can
afterwards be directly used for comparison with cosine similarity. This is the case for
all features except for the textual (content) features. However, the content features
have to be converted to the similarity space as well as they introduce theoretically
useful features. For doing this, two out of the three text representations (TFIDF and
Word2Vec) as discussed previously are used. BERT has not yet been found suitable
for training in calculating similarity in sentence(s) (Devlin et al., 2018). Using both
TFIDF and Word2Vec gives insight about different text representation usage (term
weighting scheme vs semantic word embeddings) for similarity learning. For both
implementations, every previous publication found in the embedding (title and the
concatenated content feature) is compared with the title and content of the publica-
tion. For this purpose, the paragraphs are tokenized into sentences and afterwards
tokenized into words.

For calculating similarity through TFIDF, the publication to be attributed as well
as a previous publication of a relevant author (in their TFIDF representations) are
compared for the entirety of the vectors. This yields a similarity value for every
comparison, and afterwards different metrics can be used to determine the similar-
ity (to combine all these individual values) of the author in comparison to the pub-
lication. Some metrics include the usage of the (1) average value, (2) the max value
or (3) using the top k% titles with the most similarity with the publication. For this
thesis we test with the average value and the top k% titles metrics as they give both
perspectives: similarity scores based on an author’s total bibliography as well as a
similarity score based on only the most similar scores. Both metrics can be useful as
the average can indicate how often the author has written similar books, while the
top k% metric can offset for authors that write about many different subjects. Upon

Chapter 4. Methods 43

experimenting, the average value metric produces a space that the machine learn-
ing models ultimately ’deem’ more useful to learn upon in our experimental setup.
This is tracked by calculating the feature importance and permutation importance
for both features created with the different metrics. Thus, the average value metric
is ultimately used for the final results.

A different approach is used for Word2Vec. A neural network is trained using
a pre-trained Wikipedia corpus considering approximately 25 million Dutch arti-
cles. This pre-trained Wikipedia corpus has empirically performed well on some
similarity-derivation tasks between sentences (Tulkens, Emmery, and Daelemans,
2016) and produced reasonable results for a set of test cases in personal use. In ad-
dition, the usage of a much larger (external) corpus produces more elaborate word
embeddings that will provide better performance. Thus, these word embeddings are
used to compute similarity between the sentences of the publication’s content and
the authors’ previous publications. For this purpose the average vector for all words
in every sentence is calculated, and cosine similarity is afterwards used to calculate
similarity between these vectors for every comparison between texts. This yields
the similarity values that indicate the semantic similarity between an author’s past
writings and the publication. In line with TFIDF, both the average metric and the
top k% metric are tested upon for the purpose of summarizing the similarity values.
In accordance with TFIDF, the average metric performs here better as well.

Noteworthy is that there is a feature that can only be semantically compared
with the content of the book, which is the autobiography feature. This can showcase
whether the subjects of a publication are in accordance with the author’s expertise,
interests and so forth. Thus this means that the Word2Vec similarity implementation
is solely used for this feature.

4.5 Machine learning models

A set of different machine learning models are used based on the type of experiment.
As Section 2.1 showcased there are a multitude of viable options present for integrat-
ing machine learning for authorship attribution tasks with skewed/heterogeneous
data. The types of models can be mainly categorized into three categories: linear pre-
dictive modeling, ensemble learning and neural networks. Within these categories
the type of predictive modelling can be divided as well into classifiers and regres-
sion modelling types which are deemed both relevant due to the differing spaces of
operation.

Precedence for implementation of a classification model is given due to the fact
that all publications (and associated metadata) are labeled by an author (class). This
type of structured supervised data with labeled classes is prototypical for classifier
models, which in this thesis will define experiment 1.

On the other hand, the regressors will operate in the similarity space (see Section
4.4). A continuous output variable (y) from the similarity inputs will be predicted
through a mapping function and have a value between 0 and 1 (approximately). Un-
like with the classification task, this output will not be a label but a real-value float.
The predicted value will depend on how similar the publication is deemed to be in
relationship to a potential author’s previous works, with a higher value indicating
a more plausible match. The implementation of these types of machine learning
models with their associated research questions will be defined as experiment 2.

Finally, there is also experiment 3 that is going to consider different text repre-
sentations for the textual content features. This is an experiment on its own as the

Chapter 4. Methods 44

regular data has dozens of non-textual features that are relevant as well but do not
tell us much about how we can use the actual textual content of the publication for
author attribution. As defined in Section 2.2 we will look at three different text rep-
resentations TFIDF, word embeddings (Word2Vec and fastText) and BERT for this
purpose.

For these three different purposes varying machine learning algorithms are used
to seek the best intrinsic performing model for our task. The list of used algorithms
can be found in Table 4.6. These algorithms have mostly been mentioned or dis-
cussed in Section 2.1 and Section 2.2. In addition, we choose a wide set of different
algorithms to cover most of the machine learning intricacies found within the al-
gorithms. This also provides us a more substantiated comparison. We will use the
standard parameters in this comparison of algorithms, as initialized by their respec-
tive Python libraries. However, we check for each algorithm whether a parameter
needs to accordingly be changed if its standard parameter configuration does not fit
with the heterogeneous input data or the CSR representation. Accordingly, we will
tune the hyperparameters for the best performing model using a grid search opti-
mization implementation (which will be discussed in Section 5.2 and Section 5.3).

TABLE 4.6: The used machine learning algorithms and text represen-
tations for different experiments

Experiment 1
(Author classification)

Experiment 2
(Predicting similarity)

Experiment 3
(Text representations)

SGD learning Linear regression TFIDF (NN)
K-nearest neighbors Lasso Word2Vec (NN)
SVM ElasticNet BERT (NN)
Nearest centroid K-nearest neighbors
Logistic regression (classifier) Logistic regression
Naive Bayes Bayesian ridge
Decision trees SGD regressor
Random forests (ensemble) Decision trees
Gradient boosting (ensemble) Gradient boosting (ensemble)
AdaBoost (ensemble) AdaBoost (ensemble)

4.5.1 Experimental setup

For evaluating the performance of the models on unseen data a training-test set split
with a 75-25 ratio is used. This split is done by randomly sampling different pub-
lications to either set. The pipelines for the different experiments/models as thus
far described are fitted on the training data with the labels/output variables, and
accordingly transform the data. The resulting model which is learned upon is then
used for making predictions. The test set is used for inference and to make predic-
tions for never seen data. This simulates a real world setting and thus give insight
in how the model will realistically perform and generalize, as well as reveal if the fit
is adequate (i.e. no overfitting and selection bias).

Furthermore, as the database consists of nearly 250.000 records, the experiment
conducted in the similarity space can become considerably computationally com-
plex as all combinations for a certain publication with authors with ambiguous
names have to be inferred. For this purpose the number of possible combinations
is scoped to ambiguous names linked to between 5 and 20 authors. This means
that publications that could have been written by 5 to 20 possible authors (due to

Chapter 4. Methods 45

having the same name) will be learned and tested upon. The distribution of this
set of authors can be seen in Figure 4.6. Figure 4.6 indicates a relatively skewed
distribution towards publications with fewer potential authors (names that are less
ambiguous than others). However, when we normalize these publication numbers
for the number of total instances of each type of name in the used data, a more uni-
form distribution is approximated. When considering the instances that are actually
learned upon, publications linked to 17 potential authors are the biggest cut of the
data.

FIGURE 4.6: Distribution for authors with ambiguous names for (A)
publications and (B) normalized for total number of instances associ-

ated with that number of potential authors

4.5.2 Evaluating metrics

A set of metrics is used to evaluate the models. Accuracy (the percentage of correct
predictions) will be used as a general metric to give an indication of the quality of
the predictions. Since accuracy can potentially be misleading with skewed data, this
metric will be supplemented with the precision, recall and f1 score metrics (Goutte
and Gaussier, 2005). Precision and recall give an indication of the predictive perfor-
mance regarding true positives and sensitivity, respectively. Combining these two
metrics introduces the useful metric of F1 Score, which gives a harmonic middle
ground regarding how precise and robust the constructed model is in its totality.
For a ranking context, which is provided by experiment 2, this can be done for the
top k predictions. In this context a precision and recall set at k = 1 will prove to be
useful for comparison purposes. This is due to the fact that the output of the classi-
fication model will give labels as prediction (one item), while the regressor will give
the most likely match at the number 1 of the ranking.

Recall scores in the context of this thesis will give an indication regarding the
number of authors correctly attributed to a publication, as a fraction of the sum of
true positives and false negatives (publications where the correct author was not
attributed). Precision will then additionally give insight in how many times the
model attributed an author to publications they did not write, by considering the
true positives (correctly attributed authors) as a fraction of the sum of true positives
and false positives (erroneously attributed authors). In the task of disambiguation
this becomes mainly interesting due to the fact that we can observe this within clus-
ters of authors with the same name. For example, if we have 20 potential authors
with the name ’Bruna’, we can observe for each author with this name (A) whether

Chapter 4. Methods 46

this author’s publications were correctly attributed and (B) whether this author was
attributed to publications of other authors with the same name. Considering the
scores for every author (as determined by considering all publications associated -
correctly or erroneously - with that author), we can then consequently calculate the
recall and precision scores on average. These average scores will give an indication
of the model’s performance for the entire test set.

To get a more accurate representation the metrics will be calculated using weighted
and macro performance. We can define these two types of performances as follow-
ing:

1. Weighted: averages the support-weighted mean per label

2. Macro: averages the unweighted mean per label

Essentially, this means weighted performance will gravitate to the most popu-
lated classes, while the macro metric will gravitate to the least populated classes.
The distinction is useful as it showcases the performance on authors with many
publications as well as authors with only a few publications.

In addition, recall at larger k’s (3,5 and 10) will also be calculated for the model
implemented in the similarity space. Since similarity learning gives us the option to
get a ranking out of the results, this will be explored as well. This is primarily done
to determine the performance of a model in a ranking context and to determine
whether modelling the predictions with a ranking is a more appropriate solution for
the authorship attribution task.

4.5.3 Technical implementation

The code and technical implementation as used for the experiments in this thesis
can be found on GitHub 16. For the models of experiment 1 and experiment 2, the
technical implementation follows the theoretical properties of Section 2.1.3 after ac-
cordingly implementing the machine learning pipeline as described in Section 4.1-
4.4. Section 4.4 is exclusively used for the second experiment, which culminates into
a similarity space with a numerical target variable (similarity score). The conversion
of the data to this form means that the data can now be used by the mentioned re-
gression machine learning models, as well as showcase similarity on a feature-basis.

For experiment 3, BERT is implemented using its text classification module, which
is a deep neural network model based on the theoretical properties as discussed in
Section 2.1.4 and 2.2.3. We use a monolingual and a multilingual model for this
purpose, as recent research shows that there can be a significant difference in perfor-
mance between the two types of models (Vries et al., 2019). The BERT multilingual
(also known as mBert) pre-trained model (12-layer, 768-hidden, 12-heads, 110M pa-
rameters NN) is used for the purpose of deriving BERT embeddings for the multilin-
gual model, which supports Dutch text inputs and has empirically performed well
(Pires, Schlinger, and Garrette, 2019). For the monolingual model the Dutch Bertje
model is used, which is also a 12 layered cased tokenization model with an identical
number of parameters and hidden layers as the multilingual model. Bertje is chosen
for this purpose as it currently holds state-of-the-art performance on various NLP
tasks when using Dutch texts (Vries et al., 2019). In a similar nature, we use the neu-
ral network architecture for fastText as described in the official paper (Grave et al.,
2018).

16https://github.com/KBNLresearch/Demosaurus/tree/kinderboeken/ML_Nizar

Chapter 4. Methods 47

For Word2Vec and TFIDF we build a text classification (multi class) neural net-
work after deriving average word vectors and TFIDF features, respectively. For
Word2Vec we choose to use the CBOW underlying neural network architecture as
it operates more efficiently, while the Skip-gram architecture is too cost-intensive
to use in practice. For extracting word embeddings a pre-trained neural network
is used that trains on an extensive Corporafromtheweb (COW) 17 Dutch corpus.
The COW corpus performs empirically well for classification and outperforms other
Dutch Word2Vec based models, such as models trained on Wikipedia (Tulkens, Em-
mery, and Daelemans, 2016). We find these results as well, when replicating the
used experimental setup in the cited study for testing the performance of the COW
corpus in comparison to the other corpora for our specific task. Due to the size of
the COW corpus the subsequent word embeddings lead to the smallest percentage
of OOV-words when using children’s literature as input. For the same reason the
COW corpus leads to word embeddings with the most accurate relationships be-
tween semantically similar words. The word embeddings are consequentially used
to create average word vectors of the raw publication text input. The average word
vectors and TFIDF features are then fed through a feed-forward deep neural net-
work with a multi class text classification softmax output layer. These architectures
have been schematically drawn and can be seen in Figure 4.7.

FIGURE 4.7: Implemented neural network architectures for TFIDF
(left) and Word2Vec (right) based text classification.

4.5.4 Optimization

For optimization, we introduce the concept of using a validation set. The inclusion of
a validation set helps us (1) find the best machine learning algorithm for the task at
hand and (2) tune the hyperparameters of the consequential best performing model.
We do this by applying K-fold cross validation, which is a model validation tech-
nique for analyzing the predictive performance of a model on one or more folds. We
apply k-fold cross validation on the earlier defined training dataset, which means
that this dataset is kept separate from the unseen test set (to prevent data leakage).
We set k at 10 folds to reduce variability and give a more substantiated and accurate
representation of performance. Accordingly, we combine the validation results to
give an overall estimate of the predictive performance for different models and pa-
rameters, and ultimately the model and parameters that give maximal performance
are kept. These will be used for further purposes as well as answering the research
questions.

17https://corporafromtheweb.org/

48

Chapter 5

Results

In this chapter we compare the models within the experiments and observe their pre-
dictive performance. In these comparisons we also take a look at how the different
types of (processed, engineered and added) features influence the predictive perfor-
mance. We also consider how human experts perceive the importance of the features
as the result of the conducted case study and survey. In addition, we make an inter-
experimental comparison to seek which implementation methodology for learning
as well as making predictions should get precedence when considering class im-
balance and heterogeneous data problems. Finally, we also take a look at different
text representations and how these compare with each other in a more NLP-oriented
context that purely focuses on textual input.

5.1 Baseline performance

Two types of baseline models are created to establish a non-AI reference for compari-
son with machine learning models. These baseline models are based on the notion of
disambiguating a set of authors for authorship attribution by using simplistic heuris-
tics that could potentially pick the right author sufficiently on a consistent basis. For
this purpose we implement models based on the following heuristics:

1. Picking the first author in a list of authors with the same name

2. Picking the author with the most publications in a list of authors with the same
name

The performance for both models can be found in Table 5.1. We can observe that
all weighted scores are higher than their macro counterparts. Furthermore, recall
is always significantly higher than precision. Overall a F1 score of 0.36 is achieved
for the first author model and up to 0.55 for the model that selects the author with
the most publications. Regarding macro performance the baseline models perform
drastically worse (F1 scores of 0.10 and 0.14). This difference in performance be-
tween the two metrics can be alluded to the fact that the used heuristics will get

TABLE 5.1: Performance of baseline models as measured in precision,
recall (= accuracy) and F1 score.

Heuristic Scoring type Precision Recall/Accuracy F1 Score
First author Weighted 0.33 0.45 0.36

Macro 0.08 0.20 0.10
Most publications Weighted 0.49 0.66 0.55

Macro 0.11 0.20 0.14

Chapter 5. Results 49

biased towards getting classes with many instances right which will in turn lead to
better weighted performance. At the same time the baseline models do not have a
mechanism included that can predict authors with a lower number of publications
well (as this can only happen if it is by chance) leading to lower macro performance.
In addition, when considering all data as described in the experimental setup, pub-
lications with fewer potential authors (due to fewer authors sharing the same name)
primarily define the test set, thus we also calculate individual performance on more
difficult test sets. The results of this comparison can be seen in Figure 5.1 for both
baseline models, for all metrics.

FIGURE 5.1: Performance of baseline model 1 and model 2 for differ-
ent test sets, as calculated in precision, recall and f1 respectively.

The results of the evaluation for baseline model 1 and 2 show that performance
significantly decreases for both models, as the test set tends to emulate more diffi-
cult authorship attribution choices. Gradually, F1 and precision reach scores of zero
while the trend of recall being higher can also be found here (however also signifi-
cantly declining). The baseline models perform better when considering weighted
performance, however, the decline in performance when going from 2 to 5 potential
authors is significant. Afterwards the models tend to keep declining in weighted
performance as well. Figure 5.1 showcases that the patterns between the two base-
line models are identical. Although, we can observe that baseline model 2 tends
to perform better on all test sets for both macro and weighted performance. The
difference between the baseline models is especially noticeable regarding weighted
performance while difference between macro performances is minimal for all test
cases. This difference can logically be attributed to the fact that baseline model 2’s
heuristic will statistically lead to more accurate predictions. When selecting an au-
thor with more publications than all other authors in a list of potential authors this
will naturally increase the chance to pick the right author. Which becomes apparent
when comparing with baseline model 1 that picks an author without any real statis-
tical substantiation. This is due to the notion that the first author in a list of potential
authors (in this context) is purely random.

5.2 Experiment 1: Author classification

The first experiment consists out of modelling the problem as an author classifica-
tion task. For this experiment mainly textual input substantiated with contextual
metadata is used and the models as described in Table 4.6 are used. For deriving the
best performing model in this case, the set of machine learning models have been
compared with the previously described 10 fold cross validation procedure to find
the best performing model. The results of the comparison can be found in Figure
5.2.

Chapter 5. Results 50

FIGURE 5.2: Comparison between the used machine learning algo-
rithms (see Table 4.6) based on 10 fold cross validation.

From Figure 5.2 we can observe that the different classifiers have accuracy scores
between 0.55 and 0.90, on average. The neighbors-based (kNN and Nearest Cen-
troid) classifier models have the worst performance in comparison, with scores cir-
culating around the 60% mark. This means that these types of models, while having
better performance than the first baseline model, fail to overcome the second base-
line model’s performance. All other models have significantly better performance
than both baseline models. For example, Decision Trees and Logistic Regression give
performance with a median around the 70% accuracy which beat the baseline mod-
els significantly. The ensemble learning models (Random forests and GBM), Naive
Bayes and Perceptron have on average approximately 10% better performance than
the previous cluster of groups. The AdaBoost algorithm is omitted from the graph as
it performs as an outlier model with drastically worse results (below 10% accuracy).

Ultimately, we can see that two classifiers have the best performance and reach a
median score above 80% accuracy. These are the SGD and SVM (liblinear implemen-
tation) with respectively median scores of 84% and 87% accuracy. Since the results
are based on experiments conducted on various test sets as the product of splitting
the data in folds, the models tend to have some variance in performance, with the
maximal performance gravitating around the 90% mark for both of these models.
This will require some further exploration using the precision, recall and f1 metrics
to determine which model is the best performing model on test sets that become
increasingly difficult.

For this purpose, in accordance with the baseline models, we use different test

Chapter 5. Results 51

sets of 2, 5, 10, 15 and 20 potential authors. The SGD and the SVM classifier models
were accordingly tested on each of these test sets and compared with each other. The
results can be seen in Figure 5.3.

FIGURE 5.3: Comparison between the two best classifier models for
precision, recall and F1 score for test sets that become increasingly

difficult.

From Figure 5.3 it becomes apparent that the liblinear SVM implementation out-
performs SGD on all test sets for all three metrics, for both weighted and macro
performance. The only exception to this observation is at precision (weighted) for 10
potential authors, where the classifiers have equal precision. Both classifiers show-
case similar patterns as performance in both cases peaks at 2 authors and gradually
decreases afterwards until 10 potential authors, at which subsequently a relatively
bigger decrease in performance can be found. When going from 15 to 20 potential
authors the models perform better again. This could be caused if publications with
15 potential authors are less distinctive (either by chance or by being an intrinsic
trait of publications with 15 potential authors) than publications with 20 potential
authors. In addition, there are not many publications that can be linked to 20 po-
tential authors which can also skew the results (see Figure 4.6). Considering all the
results, we will thus use the SVM model for the goals and research questions of this
thesis.

Unlike with the baseline models, precision and recall (and thus f1 score) are in
balance here, which can indicate that models are inherently robust. The models
outperform the baseline models significantly from 5 to 20 potential authors while
reaching relatively consistent performance. Especially noteworthy is the consider-
able poor macro performance on the baseline models, while the classifier models
consistently stay around the 0.6-0.8 range on all metrics for macro and above 0.75
for weighted performance. In addition, the classifier models do not fall to drasti-
cally low performance scores as with the baseline models.

The final step of the author classification task is tuning the SVM in order to find
the best performing parameters. This is done by implementing a grid search that
considers a set of values within probable ranges for different parameters and tests
the model accordingly to find the parameter values that give the best performance.
As a result, the following parameter values show to have the best performance:

• penalty: l2

• loss: hinge

• dual: True

• max_iter: 10000

• C: 100

Chapter 5. Results 52

• Tolerance: 0.01

• fit intercept: True

• intercept scaling: 10

The according performance difference of using standard parameter values ver-
sus tuned parameter values can be seen in Table 5.2. Hyperparameter tuning only
leads to a marginal increase of approximately 1-1.3% performance depending on
the metric. However with this tuned variation, we get the final model. This model
achieves good results with respectively weighted and macro F1 scores of 0.92 and
0.76.

TABLE 5.2: Performance of the SVM classifier on the test set using
standard parameter values and tuned parameter values (on all publi-

cations that can be linked to 5 to 20 potential authors).

Standard Tuned
Precision Recall F1 Precision Recall F1

Macro 0.75 0.77 0.75 0.76 0.78 0.76
Weighted 0.91 0.93 0.92 0.92 0.93 0.92

One of the main research questions in this thesis is whether adding metadata can
alleviate the heterogeneity problem. Thus, different models with different feature
selections were explored starting from a basis of only using the content of the pub-
lication. Ultimately, this showcases to what degree adding descriptive contextual
publication metadata as well as adding the features that were engineered affects the
model. The results of this experiment can be found in Table 5.3.

TABLE 5.3: Performance of the classifier for different feature inputs,
with a focus on the addition of the contextual publication metadata

(Chapter 3) and created features (Section 4.3.1).

Weighted Macro
Features Prec. Recall F1 Prec. Recall F1
Content + all metadata
+ created features
+ (ambiguous) familyname author

0.92 0.93 0.92 0.76 0.78 0.76

Content + all metadata
+ created features

0.76 0.77 0.76 0.54 0.55 0.54

Content + all metadata 0.73 0.75 0.73 0.52 0.53 0.51
Content + publisher + genres
+ themes + created features

0.72 0.74 0.72 0.52 0.52 0.50

Content + publisher 0.68 0.71 0.68 0.48 0.49 0.47
Content + genres
+ themes + created features

0.64 0.67 0.64 0.43 0.44 0.42

Content + genres
+ themes

0.63 0.66 0.63 0.43 0.43 0.41

Content + created features 0.61 0.64 0.61 0.41 0.41 0.41
Content only 0.59 0.61 0.58 0.38 0.39 0.37
Best performing baseline model 0.49 0.66 0.55 0.11 0.20 0.14

Chapter 5. Results 53

Table 5.3 shows that addition of different metadata features as well as created
features incrementally improves performance. Ultimately, using all contextual in-
formation in combination with created features yields the highest scores. This can
indicate that a multitude of different heterogeneous input features could, when se-
lected, processed and combined accordingly, lead to a performance increase of ap-
proximately 27% for weighted performance and 41% for macro performance (not
considering ambiguous author surnames as a feature). The specific influence of fea-
tures will be further explored in Section 5.4, where they are also compared with
author related metadata.

5.3 Experiment 2: Similarity learning

For determining the best model for similarity learning, we undergo the same k-fold
cross-validation procedure with k set at 10. As these are regression models, we use
the (negated) mean squared error (MSE) instead for determining the best model. The
results can be found in Figure 5.4.

FIGURE 5.4: Comparing different types of similarity learners (see Ta-
ble 4.6) based on MSE scores.

Figure 5.4 shows that there are clusters of groups to be found regarding perfor-
mance. Lasso and ElasticNet have the worst performance with identical scores, fol-
lowed by a group of models who approximately have a negated median MSE value
of around -0.03 (linear regression, logistic regression, bayesian ridge and SGD). This
could indicate that these types of models tend to fundamentally learn the same pat-
terns with this data input. From the ensemble learning methods AdaBoost has the
lesser performance, while also only having somewhat better performance than the
previous mentioned cluster of machine learning algorithms. kNN performs rela-
tively well, especially considering its classifier counterpart in Section 5.2. Ultimately
the best performing models are GBM (ensemble learning) and Decision Trees (DT).
Their scores are approximately similar, so they will be explored further. It becomes
also apparent from observing the ranges of the boxplots in Figure 5.4 that the simi-
larity learners do not have much difference in performance over different test sets.
Unlike the classifiers, which relatively have much more variance in performance,
this could be an indication that the similarity learners are more robust models.

Chapter 5. Results 54

GBM and DT will both be explored through converting the regression output to a
ranking of different authors based on the predicted similarity scores. We will explore
their precision, recall and F1 score for k=1 and seek which algorithm performs better
for further use. The results for the test sets with different number of potential authors
can be seen in Figure 5.5.

Figure 5.5 shows that for some metrics on some test sets performance only marginally
differs, but overall GBM has the better performance on different test sets. These dif-
ferences become more noticeable as the test set becomes increasingly difficult. We
will thus use the GBM model for the goals and research questions of this thesis as
the found superior performance applies for both weighted and macro performance.
Noteworthy are also the patterns found in the graph. The models behave more con-
sistent and stoic than the classifiers when using more difficult test sets. There is not
much performance difference between 5 and 20 potential authors, for example. Con-
versely, across the board the similarity learners do have lower performance scores
than the classifiers.

FIGURE 5.5: Comparison between the best similarity learners (GBM
and DT) for precision, recall and F1 score for test sets that become

increasingly difficult.

As with experiment 1, the similarity learner is also accordingly tuned using a grid
search implementation. Consequentially, the best model performance is achieved
with the following parameter values:

• number of estimators: 1000

• min samples split: 5

• min samples leaf: 4

• subsample: 0.7

• max depth: 13

• learning rate: 0.1

The results can be seen in Table 5.4. Tuning in this case has a significant ef-
fect on the performance of the model, with approximately a 14% increase for macro
F1 performance. For weighted F1 performance, an increase of 3.7% performance is
reached.

The similarity learner also makes it possible to use the (externally retrieved) au-
thor information. As, in line with Table 5.3 for Experiment 1 we will look at the
role of different feature selections and their impact on the model. The results can be
found in Table 5.5.

Chapter 5. Results 55

TABLE 5.4: Performance of the similarity learner on the test set using
standard parameter values and tuned parameter values (on all publi-

cations that can be linked to 5 to 20 potential authors).

Standard Tuned
Precision Recall F1 Precision Recall F1

Macro 0.44 0.41 0.42 0.50 0.48 0.48
Weighted 0.86 0.79 0.81 0.87 0.82 0.84

TABLE 5.5: Performance of different feature inputs for the GBM sim-
ilarity learner.

Weighted Macro
Features Prec. Recall F1 Prec. Recall F1
Title + publisher + year of publication 0.91 0.87 0.88 0.65 0.63 0.63
Content + all author information
+ metadata + created features

0.87 0.82 0.84 0.50 0.49 0.48

Content + metadata + created features 0.87 0.82 0.83 0.48 0.46 0.46
Content + all author information 0.81 0.77 0.77 0.44 0.43 0.42
Content 0.81 0.68 0.72 0.37 0.34 0.34
Autobiography + age + role author
(All author information)

0.67 0.69 0.66 0.32 0.35 0.32

Role author 0.57 0.65 0.59 0.24 0.32 0.26
Autobiography + age author 0.61 0.46 0.49 0.22 0.23 0.21
Autobiography author 0.50 0.30 0.33 0.13 0.14 0.11
Best performing baseline model 0.49 0.66 0.55 0.11 0.20 0.14

Table 5.5 showcases the influence of adding author related information. While
the impact of the individual author related data components differs, ultimately the
combination of author related information only increases performance marginally.
On average a 3% increase for macro performance is found while weighted perfor-
mance only has a 1% increase for F1 score when compared to using all metadata.
However, the best performance for the similarity learner is reached when using the
top 3 most important features (which will be addressed in Section 5.4). Thus, best
performance is reached when only using publication metadata, which might indi-
cate that the addition of (the available/linked) author information is redundant.

To seek how the similarity learner performs when modelled as a ranking archi-
tecture, we also calculate recall values at higher k values. The results for higher k
values can be seen in Figure 5.6. We can observe that recall increases with higher
k values, most apparent when going from a top 1 to a top 3 ranking. After k = 3
recall still increases but at a significantly slower rate. This could mean that provid-
ing the results in a ranked matter can be useful, especially when considering a top 3
ranking.

Chapter 5. Results 56

FIGURE 5.6: Performance for recall@k set for different values. Re-
call@k = 10 is only calculated for rankings with at least 10 potential

authors.

5.4 Feature importance and relationships with machine learn-
ing

How models arrive at their predictions is the result of the found learning patterns in
the data inputs. In this section we take a look at the features and their relationship
with the target variable (the correct author), as well as their importance.

We compute the Pearson correlation coefficient for determining the correlations
of features and the target variable. This has been computed for the top 15 features
with the highest correlations and can be observed in Figure 5.7.

Figure 5.7 showcases that a few features stand out in terms of correlation with
the correct author. This can be observed when inspecting the first row or column.
Thus, namely the publisher, year of publication, genres and title features seem to
stand out. They have a relatively higher correlation coefficient, up to the consid-
erable high correlation coefficient of 0.70 for the publisher feature. A majority of
the features have a correlation of around the 0.33-0.36 mark, mostly consisting out
of the created features that convey statistical information. We can also see that the
concatenated content features (both TFIDF and W2V) have a lower correlation with
the target variable when compared to solely using the title of the book. However,
when observing all correlation coefficients, we can see that title has a high correla-
tion with the content feature (0.76). This could possibly indicate that using both is
redundant and precedence should be given to using the title solely. Other features
do not seem to imply collinearity, as most of the matrix consists out of low correla-
tion coefficients. Furthermore, features not included in Figure 5.7 failed to have a
correlation score of 0.25 or above with the target variable.

To determine the importance of different features for accurately predicting the
right author, we compute the relative feature and permutation importance. The
relative feature importance indicates the importance of a particular feature for the
model when compared to all other features and how much it influences the model’s
predictions as such. The feature importance can be computed by considering the
underlying architecture of the trained and fitted machine learning models which
provide insight regarding the weighted coefficients the model uses to make its pre-
dictions. Furthermore, the permutation importance for a feature is an indicator of
how much the model relies on the feature for making an accurate prediction. This
is done by shuffling the values of a feature and then subsequently searching how
much this increases the prediction error. If after doing so, prediction error increases
consecutively for different publication instances, then the permutation importance

Chapter 5. Results 57

FIGURE 5.7: Correlations between input features and target variable
(correct author) for the top 15 features with the highest correlations.

value will reach higher values and thus indicate an important feature. The results of
these importance metrics for the different features can be observed in Figure 5.8.

FIGURE 5.8: Relative feature and permutation importance.

Figure 5.8 showcases that some of the higher correlated features also have the
highest relative and/or permutation importance (publisher, year of publication and
title). The publisher feature is significantly dominant regarding relative importance,
which diminishes the relative importance of other features. A surprise found in
the top 5 features is the role of the author feature, which despite its lower correla-
tion score in Figure 5.8 has the third highest relative and permutation importance.
Furthermore, the absence of the number 3 most correlated ’genres’ feature is also

Chapter 5. Results 58

remarkable. When looking at permutation importance we can see that the current
input does in fact affect the model for a variety of features. To get more insight in
how the model uses other features in a different setting, we also seek feature impor-
tance with the omission of the dominant features. The results can be seen in Figure
5.9.

FIGURE 5.9: Relative feature and permutation importance without
title, publisher and year of publication.

When omitting the most dominant features we get a more balanced importance
distribution of the remaining features. Genres, while not scoring well with inclusion
of the dominant features, now has the biggest relative importance. At the same time
there is not a considerable discrepancy in importance with the other features. Fol-
lowing genres, a selection of features have approximately the same value in terms of
importance, such as the statistical features, content and the role of the author feature.
Role has degraded, however, in terms of relative performance while simultaneously
having the highest permutation importance. Less important features now also seem
to play a role in the model and do not get completely diminished from having a role
in the model’s predictive decisions.

5.5 Human perception of feature importance for authorship
attribution

Regarding how the features are perceived by different types of human experts, we
can see the results of the conducted survey (as described in Section 4.1.3) in Figure
5.10. Figure 5.10 shows that experts mainly attribute importance to author infor-
mation related features such as age of the author, autobiographical notes about the
author and role of the author. These three features all get 10 votes. Other relatively
high scoring features is the year of publication feature with 7 votes and the title with
5 votes. In contrast, most of the contextual publication metadata get around 1 to 3
votes and are not deemed as important. ’Others’ in the pie chart are the publication
language and country of publication features which both only got one vote. Three
features failed to get any votes (and are thus not displayed in the pie chart), which
are the (1) number of authors associated with the publication, (2) the engineered
statistical features and (3) extra annotations about the publication.

Chapter 5. Results 59

FIGURE 5.10: Perceived importance of the features as indicated by
the respondents (N=18) of the survey.

When comparing the results of the survey we can see that there is a significant
discrepancy between machine learning attributed importance and human attributed
importance. Human experts primarily attribute importance to author information,
while the machine learning model primarily attributes importance to publication
metadata. Furthermore, it is remarkable that the autobiography feature that is highly
deemed important by human experts does not even have a spot in the top 15 most
important features (with or without omission of the dominant features) of the ma-
chine learning model. Similarly, the age feature also ranks near the bottom of the
most important features (and only after omission of dominant features). A middle
ground can be found in the role feature, which is both deemed important by human
as well as machine learning model. Further discrepancies can be found when consid-
ering the machine learning model’s perspective, which marks the publisher feature
as the most important feature. Nonetheless, the publisher feature only gets 2 votes
and therefore is ranked as one of the least important features by human experts. The
machine learning model also deems the year of publication and title features as some
of the most important features. While year of publication and title are not as highly
rated by the human experts as other features, they still do get a sufficient number of
votes (especially year of publication).

5.6 Experiment 3: Comparing textual representations with
deep learning

The actual text of a publication is paramount to the publication’s core characteristics.
Where previous experiments focus more on different methodologies for learning,
dealing with heterogeneous metadata and added atypical data, experiment 3 focus

Chapter 5. Results 60

purely on text. As previously indicated, available text of the publication is sparse
and in approximately 75% of the cases there is only a title available. In this section
we take a look at which of the discussed text representation types ultimately give
the best predictive performance.

FIGURE 5.11: Performance for different types of textual representa-
tions for machine learning.

The results of the compared text representations can be seen in Figure 5.11. We
can see that ultimately both variations of BERT have the best performance. There
is not much difference between mBert (multilingual model) and Bertje (monolin-
gual model), although, mBert performs slightly better with an approximately 2%
increase in performance. Both BERT implementations reach around a F1 score of
0.57-0.60 with balanced precision and recall scores. With approximately a lower pre-
dictive performance of 15%, we find the TFIDF models place second after the BERT
models. TFIDF with LSA applied does not lead to a significant (positive) change
in performance, conversely it leads to slightly worse performance. This could be
the result of the corpus not having sufficient variance for mapping words into a
lower dimensional representation, and in fact important information is lost when
doing so. Taking the last places are all the variations of the static word embeddings
based methodologies: Word2Vec and FastText. The variations with stopword re-
moval have a 15% worse performance than TFIDF. However, it shows that exclusion
of stopwords leads in both cases to performance increase. To seek if performance
increases with change of the vocabulary of the word embeddings, multiple other
corpora (such as Wikipedia, Sonar500 1) were tried but ultimately Word2Vec reaches
best performance with the COW corpus as discussed in Section 4.5.1 (of which the
results have been included in the graph). When looking at the differences in metrics,
we can see that the lower the scores become the more discrepancy we can find be-
tween precision and recall. Overall, recall seems to always be (slightly) higher than
precision, except for mBert.

Outside of performance, there might also be the consideration of using compu-
tational resources. All models were trained with a maximum of 20 epochs and a

1https://github.com/clips/dutchembeddings

Chapter 5. Results 61

batch size of 16. Some models converted earlier to optimal performance than others,
with early stopping approximately detecting conversion to optimal performance at
around 15 epochs on average. While BERT has the best performance it is also the
most computationally expensive. BERT takes the longest time to train, and also is
expensive in memory usage, even when input is confined to solely the titles of the
publications. In comparison, while TFIDF and the word embeddings based models
have significantly lower performance they also take significantly less time to train,
validate and test.

62

Chapter 6

Discussion

In this thesis an extensible pipeline is created for dealing with heterogeneous textual
and non-textual metadata. This involves various different defining pre-processing
steps, feature engineering and selection, integrating linked data, converting data to
different spaces and considering different text representations. Consequentially, the
best performing machine learning models on the processed input data are obtained
through comparison and hyperparameter tuning. Outside of the technical aspect of
this research, we also conduct human factors-based research directly tied with bibli-
ographical experts. Metadata specialists are interviewed for gaining insights in cur-
rent problems of manually attributing authors to publications, as well as the quality
of the available data. These insights consequentially answer whether machine learn-
ing implementations can facilitate solutions for the named problems. From these
insights we find that machine learning can be used for this purpose. This is mainly
due to the considerable amount of reference data, available data being labelled (i.e.
can be used for supervised learning) and the task having a high automation po-
tential, which machine learning has historically been successfully implemented for.
However, it also becomes apparent that we need to consider and adapt to the het-
erogeneous character of the available data as well as the class imbalance problem for
a successful implementation.

These considerations culminated into three different experiments, as well as a
follow up to the interviews. Namely (1) an experiment where the processed data is
used for an author classification task, (2) an experiment where we implement simi-
larity learning and seek whether it increases performance when we consider the pro-
totypical problematic nature with author classification and (3) an experiment where
we compare different text representations to seek if BERT also achieves its state of
the art performance on sparse/heterogeneous textual data and thus should be rec-
ommended for usage. Furthermore, a survey was taken accordingly to seek whether
the outcomes of the machine learning models are in line with the expectations of hu-
man experts.

In this chapter we will discuss and evaluate the results within the different ex-
periments as well as what the results mean in the context of this thesis’ research
questions. As the two resulting models of the different learning spaces (experiment
1 and 2) ultimately have the same goal, it is insightful to discuss the results of the
two experiments in conjunction. In addition, we also evaluate the methodologies
and seek their respective advantages and limitations when compared to each other.

6.1 Machine learning algorithmic performance

How can we obtain the most optimal performance when considering sparse and heteroge-
neous data input for (1) author classification and (2) similarity learning machine learning
tasks?

Chapter 6. Discussion 63

Experiment 1 shows that the SVM has the best performance when it comes to
making predictions for a combination of text and metadata features. In experiment
2, GBM, an ensemble learning implementation has the best performance.

Ensemble learning models include redistribution of weights to samples in sub-
sequent learning tasks. These samples are the ’hard-to-predict’ samples that the
models have difficulties with predicting correctly. This fundamental notion tends to
lead to more intricate models and thus can generally lead to better performance. In
addition, ensemble learning models are a multitude of many (weak) learners, which
through combination lead to more robust models as they are instantiated with many
different perspectives for learning relationships between predictors and target vari-
able. Theoretically, this should lead to more substantiated models and thus better
predictive performance. In the case of the classifier this might not be the case due
to the many features created as the byproduct of the pre-processing steps in the
pipeline. One hot encoding, count vectorization, TFIDF and so forth create many
vectors that are in turn newly created features. The ensemble learning models can
become too resource intensive when there are a significant number of features to
learn upon, so the number of boosting stages or number of estimators has to be lim-
ited in the classification task. This could be seen when performing cross validation,
while the singular linear models took a few hours at most, the ensemble learning
models could take days even in the context of using a lower number of estimators
(such as 100). As the data input in the context of the classification is not well han-
dled by ensemble learning models, this means that the lower number of estimators
is mandatory. In turn the lower number of estimators will make the model confined
to a fewer number of possible stages for fitting the model and learning the patterns
in the data, which will conclusively lead to lower performance scores.

A linear model that consists out of a singular model can produce better results
in such cases as classifiers such as SGD and SVM can work well with many data
points without being too resource intensive. In addition, the data can be well char-
acterized as prototypical separable data due to the many categories the data can be
divided into (and thus the resulting to-be-predicted authors). This is probably why
we also see that, for example, an algorithm that works on the basis of dividing labels
iteratively into smaller subgroups based on categorical characteristics such as DT
performs reasonably well, while neighbor-based algorithms such as kNN and NCC
algorithms perform relatively worse. This is also based on the notion that kNN and
NCC typically work better with continuous values to determine distance between
instances, while the majority of the metadata can be represented by boolean val-
ues. This might also be the reason why kNN performs significantly better in the
context of similarity learning (experiment 2), where all features have continuous
numerical values as input. The remaining algorithms can be all classified as eager
learners, which can mean that differences in performance might be attributed to
lack of optimization. Under different optimization procedures a bayesian classifier
might outperform a support vector machine, for example. However, in the context
of this thesis’ research goals, the machine learning algorithm that grants the best per-
formance is ultimately trivial as the goal is to find an algorithm that gives the best
performance for answering the research questions, and not necessarily to investigate
why a certain algorithm performs better than an other algorithm.

Since the similarity space in the context of experiment 2 creates a number of
features equal to the number of different (raw) metadata features, this leads to a
dataset that does not have a considerable number of features. The number of es-
timators can then be adequately set to a number that gives optimal performance,
but does not overfit the model. In this case we see the true potential of ensemble

Chapter 6. Discussion 64

learning, namely that GBM significantly outperforms all other forms of regression
learning using regression metrics, bar DT. However, GBM also considerably outper-
forms DT when converting the output data to a ranking (the desired output format)
and getting a recall, precision and f1@k=1 score similar to classification tasks. Within
ensemble learning algorithms, GBM outperforms the other included ensemble learn-
ing algorithm (AdaBoost). This is most likely the result of its more flexible nature
and algorithmic difference of including approximation of gradients. Approximat-
ing gradients leads to the intricacy that GBM can find approximate solutions to the
additive modeling problems more adaptively (and thus is not confined to a particu-
lar loss function such as with AdaBoost, which also only identifies shortcomings by
adding high weights to problematic data points).

Ultimately, based on these results we would recommend using GBM when using
a similarity learner and the liblinear implementation of a SVM when using an author
classifier. Whether to use a similarity learner or an author classifier depends on
other aspects as well and is also a matter of user preference. This will be discussed
in Section 6.4, as investigating these methods’ adaptation to the prototypical class
imbalance problems with authorship attribution is another main research question.

In a general sense, machine learning performance between different algorithms
should be judged on a case to case basis. As the no free lunch theorem applies it
is usually recommended to test for a variety of algorithms, as it is challenging to
determine beforehand what algorithm will work the best on the input data (Wolpert
and Macready, 1997). Therefore the results in this thesis might not apply to other
problems that involve a combination of textual input and associated metadata.

6.2 Addition of contextual publication metadata and author
information

Does the addition of (1) contextual author information or (2) contextual publication metadata
to heterogeneous data increase prediction accuracy and robustness, and how do these types
of metadata compare to each other when used as input for a machine learning model?

While the author classifier can not use author information, the similarity learner
can do so. This leads to one of the main research questions: does the inclusion of au-
thor information in fact add substance for making predictions? In a similar line, the
question arises whether adding contextual publication metadata (which both types
of learning methodologies support) in itself does change the model’s behavior and
predictive performance. As showcased in Section 2, many articles within the liter-
ature with similar goals only use the actual text of publications. Using additional
metadata describing the publication for machine learning purposes is an under re-
searched topic within the bibliographical domain, and is only sparsely researched
across all domains.

6.2.1 Contextual publication metadata

When considering the contextual publication metadata, performance between indi-
vidual features differs. The results as provided in Section 5.2 and 5.4 illustrate this,
some features are dominant and actively increase predictive performance while oth-
ers do not impact the model as much. The fact that the addition of (some) publication
metadata does lead to considerable performance increase, means that we ultimately

Chapter 6. Discussion 65

can say that publication metadata does in fact increase predictive performance sig-
nificantly. Performing according feature selection ultimately establishes which con-
textual publication metadata inclusion (or exclusion) leads to the most performance
increase.

The differences between these individual metadata features can mainly be at-
tributed to the quality of the information included in features. The best performing
publication metadata features are publisher and year of publication. Both of these
features are much more distinctive than other features, while also being some of the
features with the lowest missing value rates. Processing the publisher feature is fun-
damental in this, as clustering of values that encapsulate the same publisher will
mean that the model can correctly differentiate. If this is not done then the models
will erroneously see the same publisher as completely different publishers based on
variations found in the way they have been written down in the database, which
drastically lowers the model’s ability to generalize. Based on the notion that these
processed features can successfully showcase differences in characteristics of pub-
lications (and thus their respective authors), then naturally these types of features
will produce better results for a machine learning model.

Features such as publication language, original language and country of publi-
cation only have a marginal role in the model’s predictions. This is probably due to
lack of diversity found in their data as showcased in Chapter 3, which means that on
this basis these features will fail to differentiate between different authors. Other fea-
tures will have also have a marginal role due to the big rates of missing values, such
as NUGI genres and NUR rubric. Accordingly imputing missing values leads to the
same problem as with the language-oriented features, namely lack of diversity and
characteristics to base differentiation on. These types of features thus, ultimately, are
not well-suited for a machine learning task and should be omitted. This also rein-
forces the belief that contextual metadata should not always be automatically added
under the belief system that using more information will lead to better results. Con-
textual metadata must be carefully examined regarding whether the data introduces
valuable differentiation possibilities for a machine learning model, as not doing so
can instead even decrease the performance of a model.

Surprisingly, the CBK genres and themes features can be seen as underperform-
ing features. The fact that these features combined have a low rate of missing val-
ues, as well as a valuable ability to differentiate publications and authors based on
their content should theoretically lead to a feature that can perform well in machine
learning. The genres feature also has a high correlation with the correct author tar-
get variable, which should only reinforce this belief. However, performance is poor
and when including all features they fail to be in top 10 regarding either relative or
permutation importance. When looking at an explanation for this behaviour, we can
perhaps deduct that this is due to inclusion of otherwise dominant features such as
publisher, year of publication and title of the book. After omitting these features,
the genres feature rises to become the feature with the most relative importance (see
Figure 5.9). This can mean that there is a considerable correlation between gen-
res and the three dominant features combined. Another possibility would be that
there exists a correlation to a certain degree and in other cases the other features are
preferred for basing predictions upon by the model, due to genres either being con-
tradictory or not having enough predictive power as a feature for those cases. Either
possibilities would make the usage of genres redundant and thus the model omits it
from further use when considering all features.

Chapter 6. Discussion 66

6.2.2 Author information

The results of author information inclusion seem to indicate that author information
in its current form is not useful. Both the autobiography as well as age of the author
features perform poorly and have a low correlation with the correct author, as well
as a low relative and permutation importance. While autobiography seems to be
a promising feature (in theory and as mentioned by the experts in the interviews),
its performance in real time can be attributed to a variety of things. Inspecting the
autobiography data entries, it becomes apparent that next to a vast number of en-
try points having missing values many of the values are of low quality. Another
significant portion of the feature includes codes that upon further consultation with
different experts seem to not convey any important information, nor can they be
traced back to words that convey useful information. Other data entries are either
(1) one-word or small descriptions, (2) vague descriptions, (3) references to exter-
nal websites, (4) references to a specific event in the author’s life, (5) administrative
notes (thus no actual autobiographical information) or (6) throwaway information.
Ultimately, when evaluating this feature in depth we can conclude that the quality
of the information is low. Which means that it is not possible in many cases to find
semantic similarity between these biographical notes and the actual publications.
Even in the cases of high quality information being inserted in this feature, there is
also still the possibility that it is irrelevant to the publication’s content, which will in
turn also lead to no semantic similarity being found. The combination of all previ-
ously mentioned problems that arise with this feature, leads to a feature that will not
perform well when used as a feature to base predictions upon in a machine learning.

Regarding other author related information, the age of the author (at publication)
feature can in many occasions not be calculated due to mostly missing birth year val-
ues. Therefore in many cases it can not have a role in determining the correct author,
which in turn explains it does not score well with the metrics that determine fea-
ture importance. With two out of three features considered not important, this only
leaves the role of the author feature. Relatively, the role of the author scores high
in the importance measuring metrics, even when it has a low correlation with the
correct author. This might indicate that this feature mostly plays a role in lowering
the number of potential authors, and not necessary at finding the right author. How-
ever, ultimately the model gets the best performance when using a feature selection
that omits the role feature, as could be seen in Section 5.3. This might indicate that
role only has a useful meaning in the context of a unfiltered feature selection input
for the model, which is ultimately a model that gives lower performance overall.
The unprocessed version of the role version has many missing values, and with do-
main knowledge approximately half of the missing values could appropriately be
imputed. Whilst this significantly increases the quality of the role feature, this still
leaves a relatively high number of missing values (approximately one third), which
could only be imputed with a generic ’unknown’ label. This resembles some of the
earlier found problems with other features, namely a feature that can be hard to
differentiate authors upon in a significant portion of the cases.

Chapter 6. Discussion 67

6.3 Differences between expert and machine regarding us-
age of information for authorship attribution to publica-
tion

Do bibliographical metadata experts differ in work approach and their perceived importance
of information for authorship attribution in comparison with machine learning models?

In this thesis the role of the current manual attribution of authors to publications
has been considered, mainly to get insights in current problems in manual attribu-
tion but also to get insights in how different types of information can potentially be
used. Ultimately the goal of the KB is not to fully replace manual authorship attri-
bution with automation, but rather to supplement it and make the attribution task
significantly less laborious. From the interviews and survey results we can observe
that there is difference between expert perceived importance of the available infor-
mation and the importance of the features as determined by the machine learning
models. In Section 5.5 this difference becomes mostly apparent, which could mean
that implementation in the setting with the same people can lead to negative expe-
riences. This might be the product of having to work with a supervising machine
learning model that is conflicting to the human expert approach.

Experts attribute the most importance to the author information related features,
while the machine learning models deem the contextual publication metadata fea-
tures to be the most important. This could possibly be the result of the machine
learning model’s stoic and statistically determined importance of features, while hu-
mans have a perception of what features should be more important based on logi-
cal reasons. The main difference here could be that expectation differs from reality,
as the author information related features tend to have low quality input as dis-
cussed in Section 6.2. If the author information related features were of high quality
then this could potentially fulfill the expectations of the respondents. At the same
time, the results can also indicate that humans can interpret data more effectively
on a case-to-case basis, and thus understand when data is useful and when it is not.
Furthermore, humans might have implicit knowledge about certain publications or
authors that the machine learning model lacks (for example by not being directly
available in the data that is trained upon). Another explanation could be that hu-
mans, such as the cataloguers, tend to work with more data than just the children’s
books database this thesis is focused on. It could be that in other datasets, features
such as age and biographical notes about authors are richer and of higher quality,
which then naturally will mean that they have more use in attributing authorship to
publication.

Either way, the conflicting perceptions of feature importance lead to a new fun-
damental question regarding how the two approaches can be combined in a real-life
setting. This could be solved, for instance, by combining the results of machine
learning with what the respondents deem to be important information, and, not re-
place one or another. A visual indicator can in such cases showcase the confidence
of machine attributed importance on a case-to-case basis, while simultaneously pre-
senting the information the end users deem to be important. Through this way users
can understand and consider the machine’s attributed importance for possible new
insights and contemplate their own expertise in conjunction. For some features it is
also possible to mitigate the importance, as for example the age of the author implic-
itly can convey the same information as the year of publication feature. Both features
convey certain information about the possibility that a certain author wrote a publi-
cation based on the timeline of an author’s prior publications. However, the year of

Chapter 6. Discussion 68

publication feature is much more important for the machine learning models, while
also being a feature with few missing values. In this case the year of publication
feature can replace the age feature without any information loss and close the gap
between human and the machine learning model’s usage of information.

6.4 Methodology comparison: similarity learner versus au-
thor classifier

To what degree can the complexities of the prototypical authorship attribution class imbalance
problem be alleviated by converting publication and author data to the similarity space?

Ultimately the question remains whether similarity learning is a better option for
attributing authorship to publications, due to the previously discussed prototypical
problems associated with author classification. One of the main benefits similarity
learning provides is the integration of author information, however, as discussed
in the previous sections this ultimately fails to increase performance in reality. A
summary of the final performances of the different methodologies can be seen in
Table 6.1. The results show that the author classifier has the best raw performance
in terms of F1, recall and precision scores. Looking further however, we can see
that similarity learning does provide some other benefits, namely (1) more robust
predictions (2) possibility to convert predictions to a ranking architecture and (3)
increased explainibility.

TABLE 6.1: Summary of the final performances of the best performing
models from the differing implemented methodologies.

Weighted Macro
Best performing models Prec. Recall F1 Prec. Recall F1
Author classifier (Section 5.2) 0.92 0.93 0.92 0.76 0.78 0.76
Similarity learner (Section 5.3) 0.91 0.87 0.88 0.65 0.63 0.63
Baseline model (Section 5.1) 0.49 0.66 0.55 0.11 0.20 0.14

The similarity learner has more robust predictions as we can observe in the va-
riety in its performance on different test sets, compared to author classification. Es-
sentially this means that the number of ambiguous authors matter less when using
a similarity learner, which can be beneficial in increasingly more difficult cases for
authorship attribution. This behaviour can be most likely attributed to the fact that
basing predictions in the similarity space is less dependent on a specific publication-
author combination instance, but rather on the calculated cosine similarity values.
A machine learning model learns the relationship by seeking whether the similarity
values for each feature are high enough to consider the author in the comparison
to be the correct author (or predict a high similarity score in case it is an incorrect
author). This is fundamentally different from the author classifier where the combi-
nations of many different types of numerical, categorical and textual features make
predictions much more dependent on the type of publication as well as the number
of potential authors associated with the publication. The latter space models a more
difficult and intricate relationship between predictors and the target variable, while
the similarity space models a relatively easy relationship.

In addition, the similarity space provides the possibility to model the predictions
in a ranking fashion. This is in contrast with the author classifier, which provides a
singular prediction (as is typical with machine learning classification). Providing the

Chapter 6. Discussion 69

predictions in a ranking matter is beneficial for a production setting, as more options
are presented to the user. This is useful in the case of harder-to-predict instances,
namely when multiple authors can be the correct author as the result of minimal
differences being present in the calculated similarity scores. As can be observed in
the results, recall actively increases when including multiple options (such as a top
3 or top 10 ranking) for presentation to an user.

Finally, the similarity learner provides explainibility that the author classifier
lacks. In the case of the author classifier the underlying architecture for making
predictions can be a black box in many instances, as there are many features that are
specifically made for a machine learning model. This leads to a reduced explaini-
bility and makes it difficult for users to understand how the model arrives at its
predictions. In the similarity learner, this problem does not exist. As the general
notion holds: the higher the score, the more probable it is that an author wrote a cer-
tain publication. The similarity learner provides similarity scores for every feature,
meaning users have insight in how similar authors‘ past works are compared to the
current publication for all individual features. This is even further simplified as in
the case of the similarity learner these features are identical to their raw metadata
presentation. The latter notion will mean that people without a machine learning
background, such as the actual users that currently manually attribute authorship to
publication, can also understand the output.

Where the author classifier has better raw performance this could possibly not
uphold in other situations. In turn the similarity learner might adapt better to those
situations considering its robust nature. The variance found in the author classifier’s
predictions (and in general a bigger decline in performance when increasing the
number of potential authors) might indicate that for publications with a larger num-
ber of potential authors than 20 the similarity learner will start to outperform the au-
thor classifier. The biggest boost in performance in the author classifier comes from
the addition of the name of the author, of which the machine learning model will
recognize that this is a fundamental differentiating feature and technically reduce
the multi class classification task with thousands of labels to many sub-classification
tasks with 5 to 20 labels. Thus, this inclusion of family name is defining and inte-
gral to combat the main problem found with author classifications tasks (too many
labels) as defined in the literature. Ultimately, this means that modelling an author
classifier in such a way that reduces the many labels in subgroups of small label
selections can be an alternative solution to the problems with standard author clas-
sification and negate the necessity of converting the data to the similarity space.

In the comparison between machine learning and baseline models, both methods
significantly outperform the best performing baseline model. The best performing
baseline model is the model that picks the author with the most publications in a list
of potential authors. Purely from a statistical point of view this can lead to picking
the correct author in a significant number of cases, which is why weighted perfor-
mance is relatively high while macro performance is considerably lower. The latter
observation is the logical byproduct of picking an author a priori, based on solely
the notion of what statistically would lead to the highest rates of picking the correct
author. However, the baseline model quickly degrades as we can see for its perfor-
mance for a bigger number of potential authors and shows that the lack of a more
in depth reasoning for predicting or picking an author leads overall to insufficient
results. Machine learning does however facilitate this more in depth reasoning and
showcases this in terms of significant increases in performance (up to 62% for macro
performance and up to 37% for weighted performance).

Chapter 6. Discussion 70

With these significant performance increases in mind, there is also the consid-
eration left regarding how either similarity learner or author classifier adapt to the
discrepancies found in instances per class, as part of the class imbalance problem.
It becomes apparent that the author classifier directly suffers from the class imbal-
ance problem when inspecting erroneous predictions. Authors with fewer number
of publications are the biggest group of classes that get wrongly predicted. We also
see a bias towards authors with more publications in the individual predictions, as
in case of uncertainty the model tends to predict the author with the most publica-
tions. Regarding the similarity learner, this class imbalance in this form is mitigated.
As all instances in the similarity space are not instantiated by labels, but rather by
target variables in the form of scores (regression output). This removes the discrep-
ancies found in instances per class, as with classification. However, the similarity
learner can also indirectly be affected by class imbalance. As authors with fewer
publications tend to give less substantiated similarity scores, which in turn, also lead
to faulty predictions. These problems could potentially be solved by implementing
confidence scores. Confidence scores can offset authors with a few publications by
giving the model information that the calculated scores are perhaps not of high qual-
ity for certain authors.

6.5 Text representations

How do different types of text representations for heterogeneous and sparse textual data affect
model predictions?

In this section we discuss the results of experiment 3, that focuses on researching
which text representation grants the best performance. From the results it becomes
apparent that BERT significantly outperforms the alternative text representations
and upholds its state of the art performance from the literature on sparse textual
input.

Within BERT we test for a monolingual (Bertje) as well as a multilingual model
(mBERT). While difference is minimal, the multilingual model grants higher per-
formance with the same instantiated parameter values. If this is not attributable to
randomness or noise, then this could be the result of the available publication text
not being Dutch in all cases. This could also explain the small difference as only a
small minority of the publications are in other languages (up to 8%), which poten-
tially could be any language. mBert is constructed through internal representations
that have shared syntaxis of different languages, which is primarily the product of
learning natural syntactic categories that have cross-lingual overlap. This leads to
an ability to generalize cross-lingually due to parts of information language being
encoded in the same embedding space (Pires, Schlinger, and Garrette, 2019). In the
context of this experiment this could explain that mBert can also learn non-Dutch
publications (when set to Dutch detection) and accordingly correctly classify them,
especially with other languages that share lexical similarity (such as Germanic or
Romance languages) (Libovický, Rosa, and Fraser, 2019). On the contrary, Bertje is
solely pre-trained on Dutch text and thus purely grants contextualized Dutch em-
beddings, which will lead to a smaller chance of correctly classifying non-Dutch
publications. However, the latter notion should lead to more intricate embeddings
for Dutch publications and thus potentially also produce better results (as previously
discussed) for the 92% majority Dutch publications. We test for this assumption in a
confined experiment, where we only use these Dutch publications. This confirms the
assumption, as Bertje does in fact have a higher performance than mBert in this case,

Chapter 6. Discussion 71

although, performance only marginally differs. In another experiment, we try to ob-
serve the differences in performance when using the 8% non-Dutch publications as
input. In this case mBert has a significant higher score, while Bertje grants drasti-
cally low performance scores. From the literature we previously could observe that
monolingual models tend to perform better for language-specific tasks. However,
the fact that it is not happening in this case could also be caused due to the Dutch
language having one of the biggest Wikipedia corpus to train upon in the multilin-
gual model, which in turn produces more enriched embeddings (Libovický, Rosa,
and Fraser, 2019; Wu and Dredze, 2020). Thus, the more intricate embeddings would
lead to better text classification results, in opposition to other languages included in
the multilingual model.

From the literature we could get an indication that BERT would outperform both
TFIDF and the word embeddings based models. Theoretically, this should be ex-
pected as BERT produces more intricate embeddings due to a deeper contextual-
ization of words. For example, BERT produces multiple embeddings for the same
word, which in turn maps different meanings of a word to the context they are used
in (such as synonyms). In word embeddings the meaning is static, meaning all dif-
ferent usages of a word will get mapped into a singular embedding. Naturally, the
former would lead to better results when trying to learn upon textual input. Seman-
tic meaning is not learned in the case of TFIDF, which in itself is already a lack of
a fundamental feature that would lead to worse results. TFIDF produces a statistic
that measures topical importance, where the input corpus is formed out of the publi-
cations themselves. The other text representations variations learn from external cor-
pora, usually significantly bigger and richer than the corpus of only the publication
titles. The latter could lead to problems associated with out-of-vocabulary (OOV)
words, but at the same can model relationships between meaning of words that are
in the corpus more accurately. BERT outperforming TFIDF thus makes sense, as
modelling actual semantic meaning has many uses that gets omitted by TFIDF.

However, TFIDF does outperform static word embeddings such as Word2Vec
and FastText which in fact model semantic meaning. The corpus of publication text
being used as input for TFIDF, means that TFIDF can model relationships well be-
tween words that are only used by certain authors. This will then lead to easier to
predict authors in such cases, in contrast to word embeddings. Additionally, a con-
siderable number of authors indulge in publishing a book series. Book series result
into a set of publications having very similar names, in which TFIDF can establish
efficiently that these belong to the same author. This is amplified if the author uses
specific words attributable to that author (such as a character name, i.e. ’Nijntje’) in
their title.

Word2Vec in this thesis uses the COW corpus as previously mentioned, which
leads to 9% of the records having OOV words when generating average word vec-
tors for the publication text input. Due to the size of the COW corpus, we theorize
that in these cases OOV words would most likely be either names, neologisms, ar-
chaic words or made-up words. TFIDF would thus in these cases have better results
on these types of words which will lead to a better performance overall. Other expla-
nations might not necessary be found in the intrinsic properties of the text represen-
tations themselves, but rather in the underlying text classification neural network
architecture. As the text classification neural networks are instantiated with exactly
the same layers and neurons for comparison purposes, it might be that TFIDF is bet-
ter optimized with this type of architecture. Simultaneously, the neural networks for
word embeddings might need to be optimized and use different parameter value, as
well as the layering of the network to have better performances.

Chapter 6. Discussion 72

Between fastText and Word2Vec there is not much difference in the underlying
architecture as both use the CBOW neural network model. The main difference is
that fastText has a better way of dealing with OOV words as fastText represents
words as n-grams of characters (parts of the words) which can lead to better gen-
eralizability. However, unexpectedly, in this experiment fastText leads to worse
performance in both cases (with or without stopword removal). This might be the
byproduct of the unique approach to dealing with OOV words, which paradoxically
might reduce performance for some cases if OOV words are not reducible to more
useful subparts of words. Other explanations might be the same as the difference
found with TFIDF versus word embeddings; lack of individual model optimization.
Since the difference is not considerable, we can also possibly think of randomness as
possible cause.

6.6 Applicability beyond the KB

This thesis focused on a case study catered to the KB, as all data was facilitated by
the KB. Albeit not directly a research question, we have to wonder to what degree
the findings of this thesis are applicable to other institutions or domains that either
work with (1) heterogeneous data or (2) have ambitions for automating authorship
attribution. In this section we will discuss to what the degree the described tech-
niques and findings are universally applicable. We showcased in Chapter 1 and 2
that data problems similar to the problems found in the KB’s heterogeneous bibli-
ographical database are common. In a general sense, other institutions or domains
that work with heterogeneous data can use the techniques described in this thesis
for improving the quality of their data, with ultimately the goal to increase predic-
tive performance for a machine learning model. This should also be a fundamental
step in the pipeline before using any machine learning model for such tasks. How-
ever, it should be judged on a database basis regarding what types of processing
or engineering is needed to increase the quality of the data. This thesis can effi-
ciently supplement this process, as it showcases the types of techniques that can be
applied to different types of problems found within heterogeneous data (for exam-
ple, the described different pre-processing steps for textual data versus categorical
data). Furthermore, the addition of contextual information should also in general
be considered by any institution working with heterogeneous data, as this thesis
showcases the significant role it can have in increasing predictive performance.

The magnitude of applicability increases for specifically the task of authorship
attribution with heterogeneous data, as the scope of the problem gets reduced. In-
stitutions or research groups working with authors as labels, will have a multi-class
problem with an atypical higher number of labels. Thus, the practice of convert-
ing data to the similarity space can be universally recommended in those cases, as
this showcases to be an effective solution for this type of class imbalance problem.
Furthermore, as this thesis focuses mostly on Dutch publications, we also have to
consider whether the findings apply in an international sense. As the language is
only relevant for the textual features of the publication, these findings stay appli-
cable to all other types of (contextual) metadata. Even in the cases of textual fea-
tures, language ultimately only plays a marginal role. This is due to the fact that
both a multilingual as well as monolingual BERT model outperform other text rep-
resentations significantly. mBert (the multilingual model) showcases to have the
best performance in regards to the semantic representation of the text. Thus, insti-
tutions using non-Dutch publications could use the same model. As either variation

Chapter 6. Discussion 73

of BERT showcases a significant increase in performance over other types of text
representations, other institutions could also still consider the possibility of using
a monolingual BERT model. As the types of monolingual models are different per
language, we can not give an indication whether mBert will also outperform non-
Dutch monolingual models. As previously discussed, we could see that for some
languages monolingual models outperform mBert, thus we recommend to explore
this on a case-to-case basis.

74

Chapter 7

Conclusion

This thesis shows that there are possibilities for replacing or alleviating laborious
manual attribution of authorship to publication with heterogeneous data input. For
this purpose an extensible pipeline can be used that ultimately leads to adequate
performance, as this pipeline results into a model that can predict the right author
in a substantial majority of the cases and significantly reduce the number of possi-
bilities in hard-to-predict cases. Either way, this implementation reduces costs and
time consumption for authorship attribution in a real-world setting and thus facil-
itates more efficient work procedures. Before applying machine learning, various
techniques such as pre-processing data, feature engineering and selection, convert-
ing data to other vector space representations and integrating linked data can in-
crease the quality of the input data. Consequentially, different machine learning
methodologies can be considered for authorship attribution: namely author classi-
fication and similarity learning. Author classification grants the best performance,
while similarity learning grants more explainability, options and produces more ro-
bust predictions as part of dealing with the class imbalance problem. Regarding
supplementing the text of the publication with information, the addition of contex-
tual publication metadata shows to actively increase predictive performance. On the
contrary, author related information, as made possible by using similarity learning,
does not result into increases in performance due to low quality input. For represen-
tations of text, the multilingual variation of the NLP language model, BERT, gives
the best performance. Multilingual BERT produces the best performance due to a
combination of more intricate embeddings and a wider coverage of the semantic
meaning in the available publication text versus other text representations.

Based on interviews and a survey this thesis also gives insight in manual author-
ship attribution and human factors-based considerations for integrating machine
learning in the current workflow. Investigation of human experiences showcases
that the end users have a different perception of the importance of the available in-
formation when compared to machine learning models. However, this difference
in perception should not lead to negative experiences. Some data features that are
perceived to be important can either be replaced by other, similar information con-
veying, features that lead to better performance. In addition, it could be illustrated
to an end user that the data feature deemed important is of low quality for a certain
publication (and that other features might be more important).

For future work we recommend to research whether results stay consistent for
publications with more than 20 potential authors, as well as publications that are not
children’s books. In addition, we also recommend to research whether non-primary
authors such as translators and editors can also be correctly predicted by implement-
ing the pipeline described in this thesis. Finally, we recommend to research whether
implementation of the machine learning model in a real life setting will indeed affect
current work approaches and the associated end users positively.

75

Bibliography

Abbasi, Ahmed and Hsinchun Chen (2005). “Applying authorship analysis to extremist-
group web forum messages”. In: IEEE Intelligent Systems 20.5, pp. 67–75.

Abuhaiba, Ibrahim and Hassan Dawoud (Apr. 2017). “Combining Different Ap-
proaches to Improve Arabic Text Documents Classification”. In: International Jour-
nal of Intelligent Systems and Applications 9, pp. 39–52. DOI: 10.5815/ijisa.2017.
04.05.

Adhikari, Ashutosh et al. (2019). DocBERT: BERT for Document Classification.
Alloghani, Mohamed et al. (Jan. 2020). “A Systematic Review on Supervised and Un-

supervised Machine Learning Algorithms for Data Science”. In: pp. 3–21. ISBN:
978-3-030-22474-5. DOI: 10.1007/978-3-030-22475-2{_}1.

Arcia, Yaritza Adame et al. (2017). “Author Profiling, instance-based Similarity Clas-
sification”. In: CLEF.

Beel, Joeran et al. (2016). “Research-paper recommender systems : a literature sur-
vey”. In: International Journal on Digital Libraries 17.4, pp. 305–338. ISSN: 1432-
5012. DOI: 10.1007/s00799-015-0156-0.

Bermingham, M L et al. (2015). “Application of high-dimensional feature selection:
evaluation for genomic prediction in man”. In: Scientific Reports 5.1, p. 10312.
ISSN: 2045-2322. DOI: 10.1038/srep10312. URL: https://doi.org/10.1038/
srep10312.

Bhaya, Wesam (Sept. 2017). “Review of Data Preprocessing Techniques in Data Min-
ing”. In: Journal of Engineering and Applied Sciences 12, pp. 4102–4107. DOI: 10.
3923/jeasci.2017.4102.4107.

Blanco, Alberto et al. (May 2020). “Boosting ICD multi-label classification of health
records with contextual embeddings and label-granularity.” eng. In: Computer
methods and programs in biomedicine 188, p. 105264. ISSN: 1872-7565 (Electronic).
DOI: 10.1016/j.cmpb.2019.105264.

Boenninghoff, B et al. (2019). “Similarity Learning for Authorship Verification in So-
cial Media”. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2457–2461. ISBN: 2379-190X VO -. DOI:
10.1109/ICASSP.2019.8683405.

Boer, G. (2019). Issues with the Dutch Snowball Stemmer. URL: https://github.com/
snowballstem/snowball/issues/1.

Breiman, Leo (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32. ISSN:
1573-0565. DOI: 10.1023/A:1010933404324. URL: https://doi.org/10.1023/A:
1010933404324.

Bühlmann, Peter (Jan. 2012). “Bagging, Boosting and Ensemble Methods”. In: Hand-
book of Computational Statistics. DOI: 10.1007/978-3-642-21551-3{_}33.

Castro, Daniel et al. (Sept. 2015). Authorship verification, combining linguistic features
and different similarity functions Notebook for PAN at CLEF 2015.

Castro Castro, Daniel et al. (Sept. 2015). “Authorship Verification, Average Similarity
Analysis”. In: Proceedings of the International Conference Recent Advances in Natu-
ral Language Processing. Hissar, Bulgaria: INCOMA Ltd. Shoumen, BULGARIA,
pp. 84–90. URL: https://www.aclweb.org/anthology/R15-1012.

https://doi.org/10.5815/ijisa.2017.04.05
https://doi.org/10.5815/ijisa.2017.04.05
https://doi.org/10.1007/978-3-030-22475-2{_}1
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1038/srep10312
https://doi.org/10.1038/srep10312
https://doi.org/10.1038/srep10312
https://doi.org/10.3923/jeasci.2017.4102.4107
https://doi.org/10.3923/jeasci.2017.4102.4107
https://doi.org/10.1016/j.cmpb.2019.105264
https://doi.org/10.1109/ICASSP.2019.8683405
https://github.com/snowballstem/snowball/issues/1
https://github.com/snowballstem/snowball/issues/1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-21551-3{_}33
https://www.aclweb.org/anthology/R15-1012

Bibliography 76

Chandra Sekharan, Sindhu (Oct. 2017). Recent Approaches on Authorship Attribution
Techniques-An Overview.

Chen, Xiaoling et al. (Aug. 2011). Authorship Similarity Detection from Email Messages,
pp. 375–386. DOI: 10.1007/978-3-642-23199-5{_}28.

Chen, Yihua et al. (June 2009). “Similarity-Based Classification: Concepts and Algo-
rithms”. In: J. Mach. Learn. Res. 10, 747–776. ISSN: 1532-4435.

Clark, Kevin et al. (Aug. 2019). “What Does {BERT} Look at? An Analysis of {BERT}{’}s
Attention”. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. Florence, Italy: Association for Computa-
tional Linguistics, pp. 276–286. DOI: 10.18653/v1/W19-4828. URL: https://www.
aclweb.org/anthology/W19-4828.

Dash, M and H Liu (1997). “Feature Selection for Classification”. In: Intelligent Data
Analysis 1, pp. 131–156. ISSN: 1571-4128. DOI: 10.3233/IDA-1997-1302.

Denecke, K, T Risse, and T Baehr (2009). “Text classification based on limited biblio-
graphic metadata”. In: 2009 Fourth International Conference on Digital Information
Management, pp. 1–6. ISBN: VO -. DOI: 10.1109/ICDIM.2009.5356767.

Devlin, Jacob et al. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding.

Diederich, Joachim et al. (2003). “Authorship Attribution with Support Vector Ma-
chines”. In: Applied Intelligence 19.1, pp. 109–123. ISSN: 1573-7497. DOI: 10.1023/
A:1023824908771. URL: https://doi.org/10.1023/A:1023824908771.

Domingos, Pedro (Oct. 2012). “A Few Useful Things to Know about Machine Learn-
ing”. In: Commun. ACM 55.10, 78–87. ISSN: 0001-0782. DOI: 10.1145/2347736.
2347755. URL: https://doi.org/10.1145/2347736.2347755.

Famili, A et al. (1997). “Data preprocessing and intelligent data analysis”. In: Intel-
ligent Data Analysis 1.1, pp. 3–23. ISSN: 1088-467X. DOI: https://doi.org/10.
1016/S1088-467X(98)00007-9. URL: http://www.sciencedirect.com/science/
article/pii/S1088467X98000079.

Farda Sarbas, Mariam and Claudia Müller-Birn (Aug. 2019). Wikidata from a Research
Perspective – A Systematic Mapping Study of Wikidata.

Fathi, Mohamed, Noha Adly, and Magdy Nagi (July 2020). “Web Documents Clas-
sification Using Text, Anchor, Title and Metadata Information”. In:

Fissette, M V M (2010). “Author Identifcation in Short Texts”. In:
Freund, Yoav and Robert E Schapire (1996). “Experiments with a New Boosting Al-

gorithm”. In: Proceedings of the Thirteenth International Conference on International
Conference on Machine Learning. ICML’96. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 148–156. ISBN: 1558604197.

Gannon, Dennis (Oct. 2019). A "Chatbot" for Scientific Research: Part 2 -AI, Knowledge
Graphs and BERT. DOI: 10.13140/RG.2.2.22273.81768.

Gashler, M, C Giraud-Carrier, and T Martinez (Dec. 2008). “Decision Tree Ensem-
ble: Small Heterogeneous Is Better Than Large Homogeneous”. In: 2008 Seventh
International Conference on Machine Learning and Applications, pp. 900–905. DOI:
10.1109/ICMLA.2008.154.

Gaustad, Tanja (2004). Linguistic Knowledge and Word Sense Disambiguation. Gronin-
gen.

Ge, Zhenhao, Yufang Sun, and Mark J T Smith (2016). Authorship Attribution Using a
Neural Network Language Model.

Gómez-Adorno, Helena et al. (Aug. 2016). “Automatic Authorship Detection Using
Textual Patterns Extracted from Integrated Syntactic Graphs”. eng. In: Sensors
(Basel, Switzerland) 16.9, p. 1374. ISSN: 1424-8220. DOI: 10.3390/s16091374. URL:

https://doi.org/10.1007/978-3-642-23199-5{_}28
https://doi.org/10.18653/v1/W19-4828
https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/W19-4828
https://doi.org/10.3233/IDA-1997-1302
https://doi.org/10.1109/ICDIM.2009.5356767
https://doi.org/10.1023/A:1023824908771
https://doi.org/10.1023/A:1023824908771
https://doi.org/10.1023/A:1023824908771
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755
https://doi.org/https://doi.org/10.1016/S1088-467X(98)00007-9
https://doi.org/https://doi.org/10.1016/S1088-467X(98)00007-9
http://www.sciencedirect.com/science/article/pii/S1088467X98000079
http://www.sciencedirect.com/science/article/pii/S1088467X98000079
https://doi.org/10.13140/RG.2.2.22273.81768
https://doi.org/10.1109/ICMLA.2008.154
https://doi.org/10.3390/s16091374

Bibliography 77

https://pubmed.ncbi.nlm.nih.gov/27589740https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC5038652/.

Goutte, Cyril and Eric Gaussier (Apr. 2005). A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation. Vol. 3408, pp. 345–359. DOI: 10.
1007/978-3-540-31865-1{_}25.

Grave, Edouard et al. (2018). “Learning Word Vectors for 157 Languages”. In: Pro-
ceedings of the International Conference on Language Resources and Evaluation (LREC
2018).

Gressel, Gilad et al. (2014). “Ensemble learning approach for author profiling”. In:
Notebook for PAN at CLEF, pp. 401–412.

Grieve, Jack (2007). “Quantitative authorship attribution: An evaluation of tech-
niques”. In: Literary and linguistic computing 22.3, pp. 251–270.

Grzegorczyk, Karol (2019). Vector representations of text data in deep learning.
Han, Yiqiu and Wai Lam (2003). “Exploiting Heterogeneous Features for Classifi-

cation Learning BT - Intelligent Data Engineering and Automated Learning”.
In: ed. by Jiming Liu, Yiu-ming Cheung, and Hujun Yin. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 177–184. ISBN: 978-3-540-45080-1.

Hughes, Rachael A et al. (Mar. 2019). “Accounting for missing data in statistical anal-
yses: multiple imputation is not always the answer”. In: International Journal of
Epidemiology 48.4, pp. 1294–1304. ISSN: 0300-5771. DOI: 10.1093/ije/dyz032.
URL: https://doi.org/10.1093/ije/dyz032.

Imtiaz, Syed and Sirish Shah (Oct. 2008). “Treatment of missing values in process
data analysis”. In: The Canadian Journal of Chemical Engineering 86, pp. 838–858.
DOI: 10.1002/cjce.20099.

James, Gareth et al. (2014). An Introduction to Statistical Learning: With Applications in
R. Springer Publishing Company, Incorporated. ISBN: 1461471370.

Jiao, Shuming et al. (2020). “Does deep learning always outperform simple linear
regression in optical imaging?” eng. In: Optics express 28.3, pp. 3717–3731. ISSN:
1094-4087. DOI: 10.1364/oe.382319. URL: http://europepmc.org/abstract/
MED/32122034https://doi.org/10.1364/OE.382319.

Kale, Sunil and Rajesh Prasad (Apr. 2017). “A Systematic Review on Author Identifi-
cation Methods”. In: International Journal of Rough Sets and Data Analysis 4, pp. 81–
91. DOI: 10.4018/IJRSDA.2017040106.

Kang, Hyun (May 2013). “The prevention and handling of the missing data”. eng.
In: Korean journal of anesthesiology 64.5, pp. 402–406. ISSN: 2005-6419. DOI: 10.
4097 / kjae . 2013 . 64 . 5 . 402. URL: https : / / pubmed . ncbi . nlm . nih . gov /
23741561https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668100/.

Karen, Sparck Jones (Jan. 1972). “A Statistical Interpretation of Term Specificity and
Its Application in Retrieval”. In: Journal of Documentation 28.1, pp. 11–21. ISSN:
0022-0418. DOI: 10.1108/eb026526. URL: https://doi.org/10.1108/eb026526.

Khan, Jamal Ahmad (2017). “Style Breach Detection: An Unsupervised Detection
Model”. In: CLEF.

Kilinç, Deniz (2016). “The Effect of Ensemble Learning Models on Turkish Text Clas-
sification”. In: Celal Bayar Üniversitesi Fen Bilimleri Dergisi 12.2.

Koppel, Moshe, Jonathan Schler, and Shlomo Argamon (2009). “Computational meth-
ods in authorship attribution”. In: Journal of the American Society for information
Science and Technology 60.1, pp. 9–26.

Kovaleva, Olga et al. (Nov. 2019). “Revealing the Dark Secrets of {BERT}”. In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, pp. 4365–

https://pubmed.ncbi.nlm.nih.gov/27589740 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038652/
https://pubmed.ncbi.nlm.nih.gov/27589740 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038652/
https://doi.org/10.1007/978-3-540-31865-1{_}25
https://doi.org/10.1007/978-3-540-31865-1{_}25
https://doi.org/10.1093/ije/dyz032
https://doi.org/10.1093/ije/dyz032
https://doi.org/10.1002/cjce.20099
https://doi.org/10.1364/oe.382319
http://europepmc.org/abstract/MED/32122034 https://doi.org/10.1364/OE.382319
http://europepmc.org/abstract/MED/32122034 https://doi.org/10.1364/OE.382319
https://doi.org/10.4018/IJRSDA.2017040106
https://doi.org/10.4097/kjae.2013.64.5.402
https://doi.org/10.4097/kjae.2013.64.5.402
https://pubmed.ncbi.nlm.nih.gov/23741561 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668100/
https://pubmed.ncbi.nlm.nih.gov/23741561 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668100/
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526

Bibliography 78

4374. DOI: 10.18653/v1/D19-1445. URL: https://www.aclweb.org/anthology/
D19-1445.

Kraaij, Wessel and Ren Pohlmann (Apr. 1996). “Porter’s stemming algorithm for
Dutch”. In: Informatiewetenschap 1994: Wetenschappelijke Bijdragen Aan de Derde
STINFON Conferentie.

Lee, K.-Y et al. (Jan. 2017). “Comparison and analysis of linear regression & artifi-
cial neural network”. In: International Journal of Applied Engineering Research 12,
pp. 9820–9825.

Li, Bofang et al. (2019). “Scaling Word2Vec on Big Corpus”. In: Data Science and En-
gineering 4.2, pp. 157–175. ISSN: 2364-1541. DOI: 10.1007/s41019-019-0096-6.
URL: https://doi.org/10.1007/s41019-019-0096-6.

Libovický, Jindřich, Rudolf Rosa, and Alexander Fraser (2019). How Language-Neutral
is Multilingual BERT?

Litvinova, Tatiana et al. (Dec. 2016). “Profiling a set of personality traits of text au-
thor: What our words reveal about us”. In: Research in Language 14. DOI: 10.1515/
rela-2016-0019.

Liu, Shigang et al. (2017). “Addressing the class imbalance problem in Twitter spam
detection using ensemble learning”. In: Computers & Security 69, pp. 35–49. ISSN:
0167-4048. DOI: https://doi.org/10.1016/j.cose.2016.12.004. URL: http:
//www.sciencedirect.com/science/article/pii/S0167404816301754.

Maalej, Walid et al. (2016). “On the automatic classification of app reviews”. In: Re-
quirements Engineering 21.3, pp. 311–331. ISSN: 1432-010X. DOI: 10.1007/s00766-
016-0251-9. URL: https://doi.org/10.1007/s00766-016-0251-9.

Mason, Llew et al. (Jan. 1999). Boosting Algorithms as Gradient Descent. Pp. 512–518.
Mendenhall, Thomas Corwin (1887). “The characteristic curves of composition”. In:

Science 9.214, pp. 237–249.
Mikolov, Tomas et al. (2013). Distributed Representations of Words and Phrases and their

Compositionality.
Mirończuk, Marcin Michał and Jarosław Protasiewicz (2018). “A recent overview of

the state-of-the-art elements of text classification”. In: Expert Systems with Appli-
cations 106, pp. 36–54. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.
2018.03.058. URL: http://www.sciencedirect.com/science/article/pii/
S095741741830215X.

Mohsen, Ahmed, Nagwa El-Makky, and Nagia Ghanem (2016). “Author Identifica-
tion Using Deep Learning”. In: pp. 898–903. DOI: 10.1109/ICMLA.2016.0161.

Naili, Marwa, Anja Habacha Chaibi, and Henda Hajjami Ben Ghezala (2017). “Com-
parative study of word embedding methods in topic segmentation”. In: Procedia
Computer Science 112, pp. 340–349. ISSN: 1877-0509. DOI: https://doi.org/10.
1016/j.procs.2017.08.009. URL: http://www.sciencedirect.com/science/
article/pii/S1877050917313480.

Nazábal, Alfredo et al. (2020). “Handling incomplete heterogeneous data using VAEs”.
In: Pattern Recognition 107, p. 107501. ISSN: 0031-3203. DOI: https://doi.org/10.
1016/j.patcog.2020.107501. URL: http://www.sciencedirect.com/science/
article/pii/S0031320320303046.

Ostendorff, Malte et al. (2019). Enriching BERT with Knowledge Graph Embeddings for
Document Classification.

Otterbacher, Jahna (2010). “Inferring Gender of Movie Reviewers: Exploiting Writ-
ing Style, Content and Metadata”. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management. CIKM ’10. New York, NY,
USA: Association for Computing Machinery, 369–378. ISBN: 9781450300995. DOI:
10.1145/1871437.1871487. URL: https://doi.org/10.1145/1871437.1871487.

https://doi.org/10.18653/v1/D19-1445
https://www.aclweb.org/anthology/D19-1445
https://www.aclweb.org/anthology/D19-1445
https://doi.org/10.1007/s41019-019-0096-6
https://doi.org/10.1007/s41019-019-0096-6
https://doi.org/10.1515/rela-2016-0019
https://doi.org/10.1515/rela-2016-0019
https://doi.org/https://doi.org/10.1016/j.cose.2016.12.004
http://www.sciencedirect.com/science/article/pii/S0167404816301754
http://www.sciencedirect.com/science/article/pii/S0167404816301754
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/https://doi.org/10.1016/j.eswa.2018.03.058
https://doi.org/https://doi.org/10.1016/j.eswa.2018.03.058
http://www.sciencedirect.com/science/article/pii/S095741741830215X
http://www.sciencedirect.com/science/article/pii/S095741741830215X
https://doi.org/10.1109/ICMLA.2016.0161
https://doi.org/https://doi.org/10.1016/j.procs.2017.08.009
https://doi.org/https://doi.org/10.1016/j.procs.2017.08.009
http://www.sciencedirect.com/science/article/pii/S1877050917313480
http://www.sciencedirect.com/science/article/pii/S1877050917313480
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107501
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107501
http://www.sciencedirect.com/science/article/pii/S0031320320303046
http://www.sciencedirect.com/science/article/pii/S0031320320303046
https://doi.org/10.1145/1871437.1871487
https://doi.org/10.1145/1871437.1871487

Bibliography 79

Park, Youngtae (1994). “A comparison of neural net classifiers and linear tree clas-
sifiers: Their similarities and differences”. In: Pattern Recognition 27.11, pp. 1493–
1503. ISSN: 0031-3203. DOI: https://doi.org/10.1016/0031-3203(94)90127-9.
URL: http://www.sciencedirect.com/science/article/pii/0031320394901279.

Pervaz, Ifrah et al. (2015). “Identification of Author Personality Traits using Stylistic
Features: Notebook for PAN at CLEF 2015”. In: CLEF.

Pires, T, Eva Schlinger, and Dan Garrette (2019). “How multilingual is Multilingual
BERT?” In: ArXiv abs/1906.0.

Porter, Martin (2001). “Snowball: A language for stemming algorithms”. In:
Provost, F (2008). “Machine Learning from Imbalanced Data Sets 101”. In:
Qaiser, Shahzad and Ramsha Ali (July 2018). “Text Mining: Use of TF-IDF to Exam-

ine the Relevance of Words to Documents”. In: International Journal of Computer
Applications 181. DOI: 10.5120/ijca2018917395.

Qian, Tie-Yun et al. (2015). “Review Authorship Attribution in a Similarity Space”.
In: Journal of Computer Science and Technology 30.1, pp. 200–213. ISSN: 1860-4749.
DOI: 10.1007/s11390-015-1513-6. URL: https://doi.org/10.1007/s11390-
015-1513-6.

Ráez, Arturo Montejo, Luis Alfonso Ureña López, and Ralf Steinberger (2005). “Text
Categorization using bibliographic records: beyond document content”. In: Proce-
samiento del Lenguaje Natural 35.

Ramos, Juan Enrique (2003). “Using TF-IDF to Determine Word Relevance in Docu-
ment Queries”. In:

Raschka, Sebastian (July 2014). “About Feature Scaling and Normalization and the
effect of standardization for machine learning algorithms”. In: DOI: 10.13140/2.
1.4245.1849.

Ratcliff, John W. and David Metzener (1988). Pattern Matching: The Gestalt Approach.
URL: https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html.

Rexha, Andi et al. (2018). “Authorship identification of documents with high content
similarity”. In: Scientometrics 115.1, pp. 223–237. ISSN: 1588-2861. DOI: 10.1007/
s11192-018-2661-6. URL: https://doi.org/10.1007/s11192-018-2661-6.

Richter, Georg and Andrew MacFarlane (2005). “The impact of metadata on the accu-
racy of automated patent classification”. In: World Patent Information 27.1, pp. 13–
26. ISSN: 0172-2190. DOI: https://doi.org/10.1016/j.wpi.2004.08.001. URL:
http://www.sciencedirect.com/science/article/pii/S0172219004001061.

Rokach, Lior (2010). “Ensemble-based classifiers”. In: Artificial Intelligence Review
33.1, pp. 1–39. ISSN: 1573-7462. DOI: 10.1007/s10462-009-9124-7. URL: https:
//doi.org/10.1007/s10462-009-9124-7.

Ruder, Sebastian, Parsa Ghaffari, and John G Breslin (2016). Character-level and Multi-
channel Convolutional Neural Networks for Large-scale Authorship Attribution.

Salton, G, A Wong, and C S Yang (Nov. 1975). “A Vector Space Model for Automatic
Indexing”. In: Commun. ACM 18.11, 613–620. ISSN: 0001-0782. DOI: 10 . 1145 /
361219.361220. URL: https://doi.org/10.1145/361219.361220.

Schwartz, Roy et al. (2013). “Authorship attribution of micro-messages”. In: Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 1880–1891.

Sebastiani, Fabrizio (2002). “Machine learning in automated text categorization”. In:
ACM computing surveys (CSUR) 34.1, pp. 1–47.

Seroussi, Yanir, Ingrid Zukerman, and Fabian Bohnert (Jan. 2011). Authorship Attri-
bution with Latent Dirichlet Allocation, pp. 181–189.

— (2014). “Authorship attribution with topic models”. In: Computational Linguistics
40.2, pp. 269–310.

https://doi.org/https://doi.org/10.1016/0031-3203(94)90127-9
http://www.sciencedirect.com/science/article/pii/0031320394901279
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.1007/s11390-015-1513-6
https://doi.org/10.1007/s11390-015-1513-6
https://doi.org/10.1007/s11390-015-1513-6
https://doi.org/10.13140/2.1.4245.1849
https://doi.org/10.13140/2.1.4245.1849
https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html
https://doi.org/10.1007/s11192-018-2661-6
https://doi.org/10.1007/s11192-018-2661-6
https://doi.org/10.1007/s11192-018-2661-6
https://doi.org/https://doi.org/10.1016/j.wpi.2004.08.001
http://www.sciencedirect.com/science/article/pii/S0172219004001061
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1007/s10462-009-9124-7
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220

Bibliography 80

Shi, Congying, Chaojun Xu, and Xiaojiang Yang (2009). “Study of TFIDF algorithm”.
In: Journal of Computer Applications 29.6, pp. 167–170.

Shrestha, Prasha et al. (Apr. 2017). “Convolutional Neural Networks for Authorship
Attribution of Short Texts”. In: Proceedings of the 15th Conference of the {E}uropean
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Va-
lencia, Spain: Association for Computational Linguistics, pp. 669–674. URL: https:
//www.aclweb.org/anthology/E17-2106.

Stamatatos, Efstathios (Mar. 2009). “A Survey of Modern Authorship Attribution
Methods”. In: J. Am. Soc. Inf. Sci. Technol. 60.3, 538–556. ISSN: 1532-2882.

Sudheep Elayidom, M et al. (Sept. 2013). “Text Classification for Authorship Attri-
bution Analysis”. In: Advanced Computing: An International Journal 4.5, 1–10. ISSN:
2229-6727. DOI: 10.5121/acij.2013.4501. URL: http://dx.doi.org/10.5121/
acij.2013.4501.

Sulea, Octavia-Maria et al. (2017). Exploring the Use of Text Classification in the Legal
Domain.

Suleiman, Dima, Arafat Awajan, and Nailah Al-Madi (Oct. 2017). Deep Learning Based
Technique for Plagiarism Detection in Arabic Texts. DOI: 10.1109/ICTCS.2017.42.

Sun, Chi et al. (2019). “How to Fine-Tune BERT for Text Classification? BT - Chi-
nese Computational Linguistics”. In: ed. by Maosong Sun et al. Cham: Springer
International Publishing, pp. 194–206. ISBN: 978-3-030-32381-3.

Tschuggnall, Michael et al. (2017). “Overview of the Author Identification Task at
PAN-2017: Style Breach Detection and Author Clustering”. In: CLEF.

Tulkens, Stephan, Chris Emmery, and Walter Daelemans (May 2016). “Evaluating
Unsupervised Dutch Word Embeddings as a Linguistic Resource”. In: Proceedings
of the Tenth International Conference on Language Resources and Evaluation (LREC
2016). Ed. by Nicoletta Calzolari (Conference Chair) et al. Paris, France: European
Language Resources Association (ELRA). ISBN: 978-2-9517408-9-1.

Vries, Wietse de et al. (Dec. 2019). “{BERTje}: {A} {Dutch} {BERT} {Model}”. In: arXiv:1912.09582
[cs]. URL: http://arxiv.org/abs/1912.09582.

Wall, Michael E, Andreas Rechtsteiner, and Luis M Rocha (2003). “Singular value
decomposition and principal component analysis”. In: A practical approach to mi-
croarray data analysis. Springer, pp. 91–109.

Wang, Lidong (2017). “Heterogeneous data and big data analytics”. In: Automatic
Control and Information Sciences 3.1, pp. 8–15.

Wang, Pu et al. (2009). “Using Wikipedia knowledge to improve text classification”.
In: Knowledge and Information Systems 19.3, pp. 265–281. ISSN: 0219-3116. DOI: 10.
1007/s10115-008-0152-4. URL: https://doi.org/10.1007/s10115-008-0152-
4.

Wang, Sun-Chong (2003). “Artificial neural network”. In: Interdisciplinary computing
in java programming. Springer, pp. 81–100.

Wolpert, D H and W G Macready (Apr. 1997). “No free lunch theorems for opti-
mization”. In: IEEE Transactions on Evolutionary Computation 1.1, pp. 67–82. ISSN:
1941-0026. DOI: 10.1109/4235.585893.

Wu, Shijie and Mark Dredze (2020). Are All Languages Created Equal in Multilingual
BERT?

Yuan, G, C Ho, and C Lin (2012). “Recent Advances of Large-Scale Linear Classi-
fication”. In: Proceedings of the IEEE 100.9, pp. 2584–2603. ISSN: 1558-2256. DOI:
10.1109/JPROC.2012.2188013.

Yule, C Udny (2014). The statistical study of literary vocabulary. Cambridge University
Press.

https://www.aclweb.org/anthology/E17-2106
https://www.aclweb.org/anthology/E17-2106
https://doi.org/10.5121/acij.2013.4501
http://dx.doi.org/10.5121/acij.2013.4501
http://dx.doi.org/10.5121/acij.2013.4501
https://doi.org/10.1109/ICTCS.2017.42
http://arxiv.org/abs/1912.09582
https://doi.org/10.1007/s10115-008-0152-4
https://doi.org/10.1007/s10115-008-0152-4
https://doi.org/10.1007/s10115-008-0152-4
https://doi.org/10.1007/s10115-008-0152-4
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/JPROC.2012.2188013

Bibliography 81

Zhang, Tong (2004). “Solving Large Scale Linear Prediction Problems Using Stochas-
tic Gradient Descent Algorithms”. In: Proceedings of the Twenty-First International
Conference on Machine Learning. ICML ’04. New York, NY, USA: Association for
Computing Machinery, p. 116. ISBN: 1581138385. DOI: 10.1145/1015330.1015332.
URL: https://doi.org/10.1145/1015330.1015332.

Zhang, Zhengyan et al. (July 2019). “{ERNIE}: Enhanced Language Representation
with Informative Entities”. In: Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics. Florence, Italy: Association for Computa-
tional Linguistics, pp. 1441–1451. DOI: 10.18653/v1/P19- 1139. URL: https:
//www.aclweb.org/anthology/P19-1139.

Zheng, Alice and Amanda Casari (2018). Feature engineering for machine learning: prin-
ciples and techniques for data scientists. " O’Reilly Media, Inc."

Zhou, Zhi-Hua (2012). Ensemble Methods: Foundations and Algorithms. 1st. Chapman
& Hall/CRC. ISBN: 1439830037.

https://doi.org/10.1145/1015330.1015332
https://doi.org/10.1145/1015330.1015332
https://doi.org/10.18653/v1/P19-1139
https://www.aclweb.org/anthology/P19-1139
https://www.aclweb.org/anthology/P19-1139

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Authorship attribution
	Background

	Theoretical background and related work
	Author Detection: Usage of Machine Learning
	Drawing insights from author detection in full text inputs
	Author detection in smaller texts and associated metadata
	Linear modelling and ensemble learning
	Linear modelling
	Ensemble learning

	Deep learning and neural networks

	Author Detection: Text Representation
	TFIDF
	Word embeddings: Word2vec and fastText
	Bidirectional Encoder Representations from Transformers

	Heterogeneous data for predictive modelling
	Disparity of information richness and availability
	Preprocessing
	Feature engineering
	Feature selection
	Usage of external knowledge

	Class imbalance: using Similarity Learning

	Data
	Methods
	Interviewing cataloguers and metadata specialists
	Interviews
	Observing difficult cases
	Survey

	Supplementing and pre-processing heterogeneous data
	Considering missing values
	Publication metadata
	Author metadata

	Clustering publishers, CBK genres and themes
	Preprocessing of text
	TDIDF and Word2Vec
	BERT

	Integration of linked data

	Feature Engineering
	New features
	Age and concatenated content feature
	Statistical features

	Representing data in machine-interpretable forms
	One hot encoding
	Count vectorization
	Reducing dimensionality with compressed sparse row matrices
	Latent semantic analysis with truncated singular value decomposition
	Standardization of numerical features
	Classifier model versus similarity model

	Modelling the similarity space
	Calculating similarity between content related features

	Machine learning models
	Experimental setup
	Evaluating metrics
	Technical implementation
	Optimization

	Results
	Baseline performance
	Experiment 1: Author classification
	Experiment 2: Similarity learning
	Feature importance and relationships with machine learning
	Human perception of feature importance for authorship attribution
	Experiment 3: Comparing textual representations with deep learning

	Discussion
	Machine learning algorithmic performance
	Addition of contextual publication metadata and author information
	Contextual publication metadata
	Author information

	Differences between expert and machine regarding usage of information for authorship attribution to publication
	Methodology comparison: similarity learner versus author classifier
	Text representations
	Applicability beyond the KB

	Conclusion
	Bibliography

