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Abstract. The Internet of Things (IoT) is a complex infrastructure of interconnected 

smart devices. Within that infrastructure, large volumes of data are constantly being 

collected and transmitted through sensors. In combination with other innovative 

technologies such as Machine Learning, IoT finds wide application in a number of fields 

such as automotive, healthcare, manufacturing, etc. However, research in the area is 

hindered, since the required IoT data often contains sensitive information, which reflects 

on its availability. A solution for this problem is to use synthetic data, which resembles 

as much as possible the real one. In this study, we conduct an experiment, in which we 

investigate the effectiveness of synthetic IoT data generation by three different tools, 

namely Mostly AI, Gretel.ai, and SDV, and compare their utilities, based on statistical 

and distinguishability metrics. We observe that Mostly AI outperforms the other two 

generators, although Gretel.ai shows similar satisfactory results on the statistical 

metrics. The output of SDV on the other hand is poor on all metrics. Through this study 

we aim to encourage future research within the quickly developing area of synthetic data 

generation in the context of IoT technology. 

 

Keywords: Synthetic Data, Internet of Things, Synthetic Data Generators, Synthetic Data 

Utility 

1 Introduction 

The Internet of Things (IoT) is a promising technology, which comprises a global 

network of smart devices, growing in numbers by the day [1]. It is based on several 



protocols and cutting-edge technologies, such as Radio Frequency Identification, which 

enables sensing objects through tags and readers, and Wireless Sensor Networks. 

Innovative companies produce more and more devices that can be connected to the 

Internet and to other devices. IoT is increasingly gaining relevance across many 

industries, including healthcare, automotive, security, and agriculture.  Its most 

valuable feature is the interconnected nature of the devices, which allows for many 

applications, such as smart agriculture, domestic and home automation, smart cities, 

and many more. 

In the healthcare industry, IoT technology is envisioned to dynamically track and 

monitor patients’ health data [2]. It is closely related to wearable technologies, as they 

involve many sensors, which allow for better interaction with the external environment. 

For instance, [3] suggests an IoT-based solution for asthma. The respiratory rate of 

patients is recorded by a smart sensor that measures the temperature of inhaled and 

exhaled air. The sensor is connected to an alarm that is triggered in case of a detected 

anomaly. 

Another popular application of IoT is in Smart Home systems [1]. Modern 

households use smart electronic devices, equipped with sensors and actuators, which 

generate and exchange data. In combination with powerful Machine Learning 

capabilities, the IoT network enables home automation, adapted to users’ needs. For 

example, it can regulate the room temperature and energy consumption, it can detect 

intruders, and so on. 

Although the IoT gains popularity, research in the area faces some challenges [4]. 

As mentioned before, the connection of smart devices relies on infrastructure that 

enhances traffic of big volumes of data. This leads to two main problems. First, the size 

of the data is crucial for the training and validation of Machine Learning models, so 

that they can find meaningful patterns, using real-life data. However, generating enough 

data to achieve this is time-consuming and therefore restricts the training and validation 

processes. Second, the large volumes of data are often considered of sensitive nature. 

The main concerns are related to the way personal data is gathered, managed, exploited, 

and secured. As a consequence, access to such data is limited, which complicates the 

research and development. 

A common solution to the aforementioned problems is to use synthetic data, which 

highly resembles real-life data [5]. There are various benefits of using synthetic data. 

For example, [5] addresses two of them: enhancement of analytics and easier access to 

data. The authors argue that often data accessibility is limited, and data scientists have 

to rely mainly on open-source data, that might not fit their research area. They also 

stress on the importance of synthetic data, when the data that is required does not exist, 

as its collection is unethical, impractical, or difficult. 

Finding a reliable method to reproduce IoT data, is expected to aid researchers in 

conducting their studies in the IoT domain, without any privacy or accessibility 

concerns. This study focuses on exploring and comparing how current methods for 

generating synthetic data perform when the task is to generate IoT data. The research 

question that the paper aims to answer is, therefore: Can we create credible synthetic 

IoT datasets using pre-existing dataset generators? We answer this question by 

conducting an experiment in which synthetic IoT datasets are generated and compared 



based on the level of resemblance to their original counterparts. The resemblance is 

measured on two metrics of synthetic data utility- statistical resemblance and 

indistinguishability. In addition, the statistical significance of the differences between 

the synthetic datasets is verified through an Analysis of Variance (ANOVA) test. 

The next sections of this paper are structured as follows: Section 2 discusses related 

work and the contribution of this study to the research in the field. Section 3 provides 

a detailed description of the set-up of the experiment, by elaborating on the involved 

datasets, generators, and evaluation method. The results of the experiment are presented 

in Section 4. Finally, Section 5 discusses the outcomes and the limitations, as well as 

outlines the possibilities for future research.  

2 Related work 

2.1 Application of Synthetic Data for IoT  

In the context of IoT, synthetic data takes place in a number of applications. In this 

section, we describe two relevant examples, which show the value that synthetic data 

can bring to IoT technology. 

The authors of [6] have suggested a benchmark tool- IoTAbench, which is built for 

testing Big Data in IoT use cases. The solution helps to understand and analyze how 

the scenarios will work. To achieve this, the benchmark uses a synthetic data 

generator, based on an augmented Markov chain model, to generate time series data 

that imitate said scenarios. The Markov-chain-based methods have been considered 

appropriate for the purposes of this work, as they manage to model sequences 

successfully.  However, we could not find an accessible and suitable solution, which 

motivated us to investigate other approaches. 

Another paper [7] describes a data generation method for synthesizing smart grid 

time series data. The authors argue that there is a lack of such data, which hinders 

research for developing Machine Learning solutions for smart grid optimization. They 

evaluate the synthetic data by performing Machine Learning tasks, such as predicting 

energy consumption for the next 24 hours and clustering users based on their 

consumption. After observing the satisfactory results, the authors conclude that the 

synthetic data is indistinguishable from the original. [7] shows how Machine Learning 

can be used to test the utility of the data, which influences the choice of metrics for the 

experiment in this paper. 

2.2 Generation of Synthetic IoT Data  

Several solutions for generating synthetic IoT data have been developed. As outlined 

in [8], in healthcare, the need for synthetic data is increasing as real-life data contains 

sensitive information about patients and the access to it is often limited. The authors 

also argue that data used to train and validate Machine Learning models in the 

healthcare sector needs to be as realistic and complex as possible. In their work, they 

present a synthetic data generating system, called SynSun, which is based on hidden 



Markov models and regression models, trained on a real-life dataset. They conclude 

that the SynSun helps to produce better activity recognition accuracy than a real dataset. 

Although the suggested generator to be tested in the experiment of this study, its 

documentation is outdated, and its code does not work properly. In addition, it requires 

a specific classification of the input data, which could not be done with the tested 

datasets. 

Another example of a synthetic data tool from the healthcare domain is the Advanced 

Patient Data Generator (APDG) [9]. What is special about this case is that generation 

of data is controlled through domain knowledge, collected from biomedical 

publications and further formalized in the Patient Data Definition Language (PDDL). 

The method is applied to generate data for breast cancer patients. The authors argue 

that the domain knowledge approach leads to more realistic results. However, this 

generator is not accessible, thus it was not possible to include it in this research. 

The limitations of the explored existing synthetic IoT data generators have inspired 

this work to investigate solutions outside of the IoT domain. This is why the tools that 

have been tested are not specifically intended for synthesizing IoT data. 

2.3 Synthetic Data Utility 

Synthetic data utility is a term to describe how much the synthetic data resembles real 

data, given a task that it has to complete. However, there are multiple ways to measure 

it. [10 below] explores how to optimize the utility of data based on its application. The 

authors argue that data utility can have multiple dimensions, and the metrics by which 

it can be determined highly depend on the use case. Seven main use cases are outlined 

and for each, the authors describe how data utility can be optimized through synthetic 

data. One of the use cases is Machine Learning, in which they describe three 

applications of synthetic data. The first one is evaluating and comparing different 

Machine Learning algorithms. The authors claim that data can be generated for the 

training, validation, and testing of algorithms regardless of the size of the original 

dataset. The second application is data augmentation, which prevents class imbalances 

in datasets. This problem results in poor performance of the algorithm on the 

underrepresented class. Finally, [10] argue that synthetic data can find application in 

preserving the privacy of data that is used for Machine Learning algorithms, as 

recovering the training data is becoming easier nowadays. However, if the training 

data is synthetic, the risk of uncovering sensitive data is reduced. Furthermore, the 

authors define six metrics to evaluate the quality of the synthetic data - Hellinger 

distance, prediction accuracy, bivariate correlation, area under the receiver operating 

characteristics, distribution comparison, and distinguishability. Our study compares 

synthetic data generators based on the last two metrics.  
In [11] a similar study is conducted, in which synthetic data generators are 

compared. Their work is focused on another metric of the synthetic data utility - the 

efficacy of Machine Learning models, which are trained on the synthetic data. In 

contrast, in our study, we investigate the statistical and distinguishability metrics of 



different generators. In addition, we test the performance of the generators exclusively 

on IoT datasets.  

3 Methodology 

We have conducted an experiment that aims to compare the utilities of three different 

data generators, namely Mostly AI [12], Gretel.ai [13], and Synthetic Data Vault (SDV) 

[14]. The experiment consists of producing synthetic datasets from two real IoT 

datasets through the three generators. The outcomes are then evaluated using two types 

of metrics of utility -statistical and detection. To define satisfactory results, we have 

also evaluated subsets of the original datasets on the same metrics, to serve as a baseline 

for the results of the generators. Moreover, as the synthetic datasets are expected to be 

as close as possible to the original ones, we hypothesize that there is no difference 

between the means of the three generators. This is verified through an ANOVA test. If 

we find that the utilities of all synthetic datasets are satisfactory and fail to reject the 

hypothesis, we can positively answer the research question. Further in this section, we 

describe the setup of the experiment in detail. 

3.1 Datasets  

Finding a suitable IoT dataset has proven to be challenging, as most such datasets are 

not easily accessible. Nevertheless, two datasets have been used for this experiment. 

The first one contains household data, from the Open Power System Data website 

[15]. It measures the total electricity consumption of different devices in several 

residential and industrial facilities. It is structured as time series with gaps of 60 

minutes between timestamps. The values of the original dataset are the cumulative 

electricity consumption up until the corresponding timestamp. However, the 

cumulative nature of the data results in an additional factor to be taken into 

consideration and the generators failed to preserve such inter-row dependency. 

Therefore, each entry from the measurement columns is converted into the difference 

between itself and the previous measurement. Moreover, the dataset contains a lot of 

missing values. The dataset is valuable for the experiment, as it can help to 

demonstrate how well the generators work with realistic IoT datasets. It contains more 

than 8500 rows and 70 columns, which represent the consumption by different 

facilities and devices.  

 

 

Fig. 1. Dataset 1 



 

The second dataset is taken from Kaggle.com and contains time series data about 

electricity consumption in a smart home [16]. Unlike the first dataset, this one does 

not contain any missing entries. The readings have a span of 1 minute and the data has 

been collected for 365 days, which makes more than 500000 rows. However, only the 

first 20000 are taken for the experiment due to technical and time constraints. The 

dataset contains 20 columns out of which one is for the timestamp and the rest are 

measurements from different appliances of the smart home. 

 

 

Fig. 2.  Dataset 2 

3.2 Generators 

Although many methods for generating synthetic data have been considered, the 

experiment has been focused on three of them.  

Mostly AI. The first generator that has been tested is the Mostly AI synthetic data 

generator, which is provided through an online platform. Although the platform is not 

specifically intended for IoT data, the service is provided both for community and 

enterprise purposes with the former being free and therefore used for the experiment. 

One of the advantages of this tool is the interface, which ensures a straightforward 

process of generating data. Firstly, the datasets are pre-processed according to the 

predefined requirements, such as filling missing values with empty strings and 

changing the DateTime values to a specific format. Once the datasets are loaded as a 

CSV file, the columns to be used are selected, as well as their data types (although 

when the dataset is loaded, the tool tries to predict them) and some additional 

parameters, such as the granularity of the values and the number of processed and 

generated subjects. The next step is the tuning of model parameters, which are set as 

suggested by the developers - a maximum of 200 training epochs with a batch size of 

32 and a learning rate of 0.001. The rest of the process is done automatically by the 

tool. First, there is an encoding step in which numerical and DateTime values are range 

limited between the 10th lowest and the 10th highest values of the original distribution. 

This is done so that no extreme values show up in the training data and consequently 

in the synthetic data. After that, the data is tokenized, split into training and validation 

sets, and passed on to the training step. The training step starts with adjusting the 

architecture of a Machine Learning model to the input and vectorizing the tokens. Then 

the model learns conditional probabilities in the feature space of independent data 

points, as well as in the feature space of sequences. The generation of new data 



happens as the algorithm samples the learned probabilities of the trained model and 

detokenizes the output.  

Gretel.ai. Gretel.ai (hereby referred to as Gretel) is an open-source platform and 

similarly to Mostly AI provides an interface, which facilitates the process of 

generating data with little technical knowledge required. In addition to creating 

synthetic data, the tool can discover and label sensitive data types on one hand and 

perform privacy-preserving transformations on the other. Although the range of 

possible inputs is wide, simple formats such as CSV are recommended. After the 

original dataset has been uploaded, the user can choose the configuration of the 

Machine Learning model. Gretel uses a long short-term memory neural network, 

which allows for better reproduction of sequential data, and has pre-built models that 

can be applied depending on the content and structure of the dataset. Thus, for this 

experiment, the chosen configuration is suitable for mainly numeric data – 100 epochs 

with a learning rate of 0.001 and 256 recurrent neural network units. A helpful feature 

of the tool is that users can use their own model configurations that better fit their 

needs. The automatic process starts once the configuration is set. The data is profiled 

and clustered and field-level statistics are extracted to be later used for validation of 

the generated data. Similar to Mostly AI, the data is tokenized and vectorized prior to 

training. The trained model can be reused to generate synthetic data records. 

Synthetic Data Vault. SDV is another open-source tool that provides multiple models 

to synthesize data. For the purposes of this experiment, we have chosen a model that 

deals specifically with time series data – the probabilistic autoregressive (PAR) model. 

This generator does not require any specific preprocessing of the data. Instead, it 

focuses on labeling the columns correctly – as context columns, sequence index, or 

entity columns. The labeling helps the model determine and reproduce the inter-row 

and inter-column relationships in the datasets. Setting the time column as sequence 

index is the only necessary preprocessing, as other labels do not match our data. The 

model is then fit to the data and ready to generate synthetic data. 

 

3.3 Evaluation  

The evaluation includes two parts. Firstly, we check the statistical significance of the 

differences between the synthetic datasets through an ANOVA test. The test is applied 

with a significance level of 0.05. Equal samples are taken from each dataset and added 

to a new dataset where they are labeled according to their origin. An ordinary least 

squares model is then fitted to the new dataset. Finally, the model is passed to an 

ANOVA method, which essentially performs the test. This process is done in Python 

programming language by using the Statsmodels package [17]. 

Secondly, we test the utility of the synthetic datasets. The metrics that have been 

applied to do so are part of a framework provided by the SVD. The framework only 

takes as parameters the real dataset and its synthetic counterpart and provides a number 



of evaluation metrics, such as Logistic Regression Detection, SVC Detection, 

Gaussian Mixture Log Likelihood, Chi-Squared, Kolmogorov-Smirnov statistic, 

continuous Kullback–Leibler divergence and others. The returned output is 

normalized to take values between 0 and 1. To define satisfactory results of the 

synthetic outputs, we take a sample from each of the original datasets and test it on the 

framework. We argue that if the results of the synthetic data are close to those of the 

original one, the three generators are capable of replicating the IoT data, although they 

are not intended for it. In addition, we set the tolerance for the difference between the 

results of the two types of data to 0.05. Our experiment measures the statistical 

resemblance, as well as the degree of difficulty to distinguish synthetic from real data.  

Statistical Metrics. Two statistical metrics are applied for the evaluation – the 

Kolmogorov-Smirnov test and Continuous Kullback–Leibler divergence. The former 

measures the probability of two sets of samples taken from the real and the synthetic 

dataset belonging to the same distribution. This is done for every corresponding pair 

of columns - synthetic and real. The Kullback–Leibler divergence, on the other hand, 

measures the difference between the probability distributions of two datasets. 

Although a low value on such a test means higher statistical resemblance, in our 

experiment the score is taken as 1 minus the score of the Continuous Kullback–Leibler 

Divergence for consistency with the other scores.  

 

Detection Metrics. The detection metrics measure how difficult it is to differentiate 

the synthetic data from the real one with a Machine Learning model. The real and the 

synthetic data are shuffled together and labeled with flags. Then the Machine Learning 

model is cross-validated by guessing if the data is real or not. Two Machine Learning 

models have been used – a support vector classifier and a logistic regression. The result 

is calculated as 1 minus the average ROC AUC score.  

 

4 Results 

In this section, we present the results of the experiment and outline the differences 

between the outputs of the three generators.  

 

4.1 Statistical Significance of Differences 

The distributions of the synthetic data, which are based on Dataset 2 have been plotted 

in Fig. 3. Example of different distributions of a column from Dataset 2 While Gretel.ai 

and Mostly AI follow a similar structure to the original dataset, SDV highly deviates 

from it.  

 



 

Fig. 3. Example of different distributions of a column from Dataset 2 

 

 

The ANOVA test results can be seen in Table 1. Dataset 1-based ANOVA test 

results and Table 2. We find a statistically significant difference between the synthetic 

datasets for both datasets. The p-value of the data that originate from Dataset 1 is 

0.000014 while the Dataset 2-based data scores 0.009653. Both values are lower than 

the predefined significance level of 0.05, which means that the hypothesis can be 

rejected. In addition, a post hoc test is conducted to further analyze the differences 

between datasets in a pairwise t-test.  The p-values have been found to be lowest in 

the cases where the SDV synthetic dataset is involved.   

 

 

Table 1. Dataset 1-based ANOVA test results 

 sum_sq df F PR(>F) 

Group 2.756213e

+07 

2.0 73464.39

4638 

0.000014 

Residual 3.751767e

+02 

2.0 NaN NaN 

 

Table 2. Dataset 2-based ANOVA test results 

 sum_sq df F PR(>F) 

Group 4.023541 2.0 4.713701 0.009653 

Residual 126.75727

6 

297.0 NaN NaN 



 

 

4.2 Statistical Resemblance 

Table 3 gives an overview of the results of the Kolmogorov-Smirnov test. On Dataset 

1 Mostly AI outperforms the other two generators with scores close to the sample 

results. Nevertheless, Gretel shows a high result as well – 0.938, while SDV has the 

lowest score of 0.804, which is far from the “satisfactory” range. Furthermore, Mostly 

AI performs equally well on the second dataset. The Gretel-generated data still reaches 

nearly 0.9 on that dataset and falls within range of the predefined tolerance. Finally, 

SDV-generated data have significantly worse performance on the KS test with only 

0.643. 

 

Table 3. Results of the Kolmogorov-Smirnov test 

Method Dataset 1 Dataset 2 

Sample 0.985 0.992 

Gretel 0.938 0.877 

Mostly AI 0.984 0.987 

SDV 0.804 0.643 

 

The results from Table 4 are similar to those from Table 1 and represent the scores 

of the three generators on the continuous Kullback–Leibler divergence metric. Again, 

Mostly AI has the highest score with distribution similarity close to both of the 

samples. Gretel also appears to produce data, which imitates the distribution of its 

original counterpart with a score of 0.94. By contrast, SDV-generated data achieves 

only 68% distribution similarity.  

 

Table 4. Results of the Continuous Kullback-Liebler Divergence test 

Method Dataset 1 Dataset 2 

Sample 0.990 0.988 

Gretel 0.940 0.944 

Mostly AI 0.986 0.984 

SDV 0.819 0.685 

 

 

The scores on statistical metrics can be further explained by observing the different 

distributions in Fig. 3. Example of different distributions of a column from Dataset 

2and the statistical properties in Table 5, which belong to a column from the second 

dataset and its synthetic equivalents. While Mostly AI and Gretel approximate the 



mean and the standard deviation of the original dataset, SDV fails to do so 

successfully. Moreover, the generator allows values that are lower than 0, which 

cannot be found in its original counterpart. 

 

Table 5. Mean and standard deviation example 

Dataset Dataset 2 Mostly AI Gretel SDV 

Mean 1.070 1.062 1.014 0.910 

Standard 

Deviation 

0.695 0.705 0.659 0.318 

4.3 Detected Resemblance 

The results of the support vector classifier’s detection have been summarized in Table 

6. Testing the two samples against their respective datasets was impossible, as the tool 

crashes when it is set to run. Therefore, we define satisfactory results as those that are 

above 0.9. The tolerance is higher than the one for the statistical results for two main 

reasons. First, we cannot define a baseline value in the same way it is done for the 

statistical metrics. Second, the synthetic datasets have been generated with only basic 

parameter configuration of their respective generators, which might limit their 

capabilities. Therefore, setting a lower tolerance value seems unreasonable. It appears 

that Mostly AI is the most successful generator in deceiving the Machine Learning 

algorithm with scores close to 0.95 on both datasets. Gretel produces lower results with 

around 89% success on the first dataset and 92% on the second one. The score of the 

SDV-generated data, on the other hand, is notably lower than the other two generators 

– 0.63 on the first dataset and 0.53 on the second one. 

 

 

Table 6. Results of the Support Vector Classifier Detection test 

Method Dataset 1 Dataset 2 

Gretel 0.887 0.921 

Mostly AI 0.945 0.944 

SDV 0.636 0.530 

 

Table 7 illustrates the performance of the linear regression model in distinguishing 

synthetic data from real one. Mostly AI’s scores are similar to the other detection test. 

In the case of Gretel and SDV, the results are only slightly different than those from 

the SVC detection 

 



Table 7. Results of the Logistic Detection test 

               Method                    Dataset 1                  Dataset 2 

                Gretel                    0.850                  0.881 

             Mostly AI                    0.918                  0.932 

                SDV                    0.646                  0.509 

 

To further investigate the difference between the results of the three generators, the 

inter-field correlations have been explored. The correlation matrices, based on Dataset 

1 can be seen on Fig. 4, Fig. 5, Fig. 6 and Fig. 7 (See Appendix).  Mostly AI imitates 

the relationships between columns of the original dataset almost perfectly. Gretel, on 

the other hand, manages to capture the overall structure of the correlations only 

partially. Finally, the correlations of the SDV-based synthetic dataset are completely 

different than those found in the real dataset. 

 

 

5 Discussion 

The goal of our experiment is to measure and compare the utilities of the three synthetic 

data generators, namely Mostly AI, Gretel, and SDV, which are set to produce IoT data. 

The results show that out of the three generators Mostly AI achieves the highest scores 

on all metrics. Two conclusions can be drawn from this – first, the platform-based 

generator produces synthetic data while effectively preserving the statistical properties 

of the original dataset. Second, the data that is being generated imitates the original 

well, as the applied Machine Learning models failed to distinguish the synthetic data 

from the real one to a large extent. Therefore, Mostly AI proves to be efficient for 

generating realistic synthetic IoT data. A drawback of this generator is that the training 

process is time-consuming, as it took around 11 hours for each of the two datasets of 

the experiment. 

Furthermore, the experiment shows that Gretel-generated data also emulates real 

data well in terms of its statistics. However, the performance on the resemblance 

metrics demonstrates that distinguishing the synthetic data from the real one is not as 

challenging for the Machine Learning models as doing so with Mostly AI synthetic 

data. As stated in [10] the utility of synthetic data is determined by its application. 

Therefore, if the Gretel generator is applied for a use case in which preserving the 

statistical properties is a priority, such as exploratory data analysis, then the utility of 

the Gretel generator would be satisfactory. Nevertheless, it is important to mention 

that the generators have been set with the recommended tuning of the parameters, 

which might have an effect on their performance.   

Finally, the SDV generator is the least reliable generator out of the three. The 

statistical similarity that it produces is significantly lower than the other two generators 



and the samples of the original dataset. Accordingly, the Machine Learning models 

are successful in distinguishing the synthetic values from the real ones. A possible 

explanation for this is that the generator fails to preserve the structure of the 

relationships in the original dataset. After further analyzing the distributions of the 

synthetic data, it is evident that SDV produces values that are significantly bigger or 

smaller and out of the range of values of the original datasets. As a consequence, the 

statistical properties of the synthetic data have been altered. In addition, the task to 

distinguish between real and synthetic values becomes easier, as the fake values are 

far from realistic. This leads to the conclusion that the SDV generator lacks the 

mechanisms to outline range constraints, thus the data that it synthesizes is not 

realistic. By contrast, both Mostly AI and Gretel remove outliers prior to testing. The 

difference in the results could be also attributed to the fact that the PAR model is tested 

with limited preprocessing. The model expects specific labeling of the columns 

depending on the role that they have in the dataset. Although the model can generate 

data by labeling only the time series column, the lower scores lead to the conclusion 

that the amount of contextual information is not enough to produce synthetic IoT data 

alone. Therefore, the SDV generator is deemed not suitable to reproduce IoT data.  

 

5.1 Limitations 

One of the challenges of this study was the scarce information about the SDV generator. 

Although there are available instructions on how to synthesize data, in-depth technical 

documentation is yet to be published. Having more knowledge about the architecture 

of the generator would give more insight into the results of this experiment. In addition, 

the PAR model is under active development, which means that future versions might 

be more successful in synthesizing IoT data. 

Furthermore, in our study we explore only three generators, as time constraints limit 

the depth of this research. Many other similar generators could have been included. 

For example, GenRocket [18] and Hazy [19] are online tools, which satisfy the scope 

of this research, as they are not specifically intended for IoT data generation.  

In addition, this study evaluates the synthetic data generators, by applying only two 

types of utility metrics. However, as already stated, utility is multidimensional and 

there are many other ways to measure it. For instance, other metrics from those 

described by [10], such as Hellinger distance or prediction accuracy would give 

another perspective on the synthetic data utility.  

5.2 Future Research 

The limitations of this paper create at the same time opportunities for future research. 

Firstly, as mentioned earlier, the parameters of the three generators have been tuned 

with only standard configuration. This experiment can be continued by tuning the 

parameters differently and exploring how different settings influence the results. In 

addition, in-depth documentation of the PAR model can help adjust it to produce 



synthetic data with higher utility. Nevertheless, the model can still be explored by 

applying different levels of contextual information by labeling the columns 

accordingly. 

Secondly, we recommend testing the Machine Learning efficacy of the generators. 

As stated earlier synthetic data comes as a solution for the lack of accessible IoT 

datasets with good quality and size. Therefore, future research could apply the 

methodology from [11] for comparing synthetic data on Mostly AI, Gretel, and SDV. 

Thirdly, alternative metrics can be used to measure synthetic data utility. One 

approach would be to investigate the privacy levels of the synthetic data. This can be 

done by fitting an adversarial model on the generated data, which can predict predefined 

sensitive data points. Furthermore, the metrics described by [10], which have not been 

used in this paper can also be applied for testing.  

Finally, the scope of the future research should be broadened beyond the three 

generators presented in this study. One of the contributions of our work is that it 

investigates the performance of said generators specifically within the IoT domain. 

Although most research done so far does not focus on IoT data, other established 

solutions to generate synthetic data can be explored and tested on IoT datasets. 

6 Conclusion 

Overall, the research question cannot be answered positively for all synthetic data 

generators. Mostly AI is found to be the best performing tool out of the three tested. 

The results shown by the generator are satisfactory for imitating real data and 

emulating statistical properties, according to our definition of it. Gretel, on the other 

hand, could be a suitable solution if it is intended to replicate statistics of real IoT data, 

but its output can be distinguished easier than by using Mostly AI. Finally, SDV does 

not yield high results on any of the utility metrics that have been explored, thus it can 

be deemed not fit for producing synthetic IoT data. We believe that this study can help 

researchers decide which tool to use for synthetic IoT data generation, thus 

contributing to the intensive research endeavors within the quickly gaining momentum 

IoT domain. 
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8 Appendix  

 

Fig. 4. Heatmap of Dataset 1 



 

Fig. 5. Heatmap of Mostly AI-generated dataset 

 

Fig. 6. Heatmap of Gretel-generated dataset 



 

 

Fig. 7. Heatmap of SDV-generated dataset 

 

 

 

 

 

 

 


